See: Description

| Interface | Description | 
|---|---|
| KMeans<V extends NumberVector,M extends Model> | Some constants and options shared among kmeans family algorithms. | 
| Class | Description | 
|---|---|
| AbstractKMeans<V extends NumberVector,M extends Model> | Abstract base class for k-means implementations. | 
| AbstractKMeans.Parameterizer<V extends NumberVector> | Parameterization class. | 
| BestOfMultipleKMeans<V extends NumberVector,M extends MeanModel> | Run K-Means multiple times, and keep the best run. | 
| BestOfMultipleKMeans.Parameterizer<V extends NumberVector,M extends MeanModel> | Parameterization class. | 
| CLARA<V> | Clustering Large Applications (CLARA) is a clustering method for large data
 sets based on PAM, partitioning around medoids ( KMedoidsPAM) based on
 sampling. | 
| CLARA.Parameterizer<V> | Parameterization class. | 
| KMeansBatchedLloyd<V extends NumberVector> | An algorithm for k-means, using Lloyd-style bulk iterations. | 
| KMeansBatchedLloyd.Parameterizer<V extends NumberVector> | Parameterization class. | 
| KMeansBisecting<V extends NumberVector,M extends MeanModel> | The bisecting k-means algorithm works by starting with an initial
 partitioning into two clusters, then repeated splitting of the largest
 cluster to get additional clusters. | 
| KMeansBisecting.Parameterizer<V extends NumberVector,M extends MeanModel> | Parameterization class. | 
| KMeansElkan<V extends NumberVector> | Elkan's fast k-means by exploiting the triangle inequality. | 
| KMeansElkan.Parameterizer<V extends NumberVector> | Parameterization class. | 
| KMeansHamerly<V extends NumberVector> | Hamerly's fast k-means by exploiting the triangle inequality. | 
| KMeansHamerly.Parameterizer<V extends NumberVector> | Parameterization class. | 
| KMeansHybridLloydMacQueen<V extends NumberVector> | A hybrid k-means algorithm, alternating between MacQueen-style incremental
 processing and Lloyd-Style batch steps. | 
| KMeansHybridLloydMacQueen.Parameterizer<V extends NumberVector> | Parameterization class. | 
| KMeansLloyd<V extends NumberVector> | The standard k-means algorithm, using Lloyd-style bulk iterations. | 
| KMeansLloyd.Parameterizer<V extends NumberVector> | Parameterization class. | 
| KMeansMacQueen<V extends NumberVector> | The original k-means algorithm, using MacQueen style incremental updates;
 making this effectively an "online" (streaming) algorithm. | 
| KMeansMacQueen.Parameterizer<V extends NumberVector> | Parameterization class. | 
| KMediansLloyd<V extends NumberVector> | k-medians clustering algorithm, but using Lloyd-style bulk iterations instead
 of the more complicated approach suggested by Kaufman and Rousseeuw (see
  KMedoidsPAMinstead). | 
| KMediansLloyd.Parameterizer<V extends NumberVector> | Parameterization class. | 
| KMedoidsEM<V> | A k-medoids clustering algorithm, implemented as EM-style bulk algorithm. | 
| KMedoidsEM.Parameterizer<V> | Parameterization class. | 
| KMedoidsPAM<V> | The original PAM algorithm or k-medoids clustering, as proposed by Kaufman
 and Rousseeuw in "Partitioning Around Medoids". | 
| KMedoidsPAM.Parameterizer<V> | Parameterization class. | 
| SingleAssignmentKMeans<V extends NumberVector> | Pseudo-k-Means variations, that assigns each object to the nearest center. | 
| SingleAssignmentKMeans.Parameterizer<V extends NumberVector> | Parameterization class. | 
| XMeans<V extends NumberVector,M extends MeanModel> | X-means: Extending K-means with Efficient Estimation on the Number of
 Clusters. | 
| XMeans.Parameterizer<V extends NumberVector,M extends MeanModel> | Parameterization class. | 
K-means clustering and variations.
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.