@Reference(authors="R. J. G. B. Campello, D. Moulavi, and J. Sander", title="Density-Based Clustering Based on Hierarchical Density Estimates", booktitle="Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD", url="http://dx.doi.org/10.1007/978-3-642-37456-2_14") public class SimplifiedHierarchyExtraction extends Object implements ClusteringAlgorithm<Clustering<DendrogramModel>>
R. J. G. B. Campello, D. Moulavi, and J. Sander
Density-Based Clustering Based on Hierarchical Density Estimates
Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining,
PAKDD
Modifier and Type | Class and Description |
---|---|
static class |
SimplifiedHierarchyExtraction.Parameterizer
Parameterization class.
|
protected static class |
SimplifiedHierarchyExtraction.TempCluster
Temporary cluster.
|
Modifier and Type | Field and Description |
---|---|
private HierarchicalClusteringAlgorithm |
algorithm
Clustering algorithm to run to obtain the hierarchy.
|
private static Logging |
LOG
Class logger.
|
private int |
minClSize
Minimum cluster size.
|
Constructor and Description |
---|
SimplifiedHierarchyExtraction(HierarchicalClusteringAlgorithm algorithm,
int minClSize)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private void |
addSingleton(SimplifiedHierarchyExtraction.TempCluster clus,
DBIDRef id,
double dist,
boolean asCluster)
Add a singleton object, as point or cluster.
|
private Clustering<DendrogramModel> |
extractClusters(DBIDs ids,
DBIDDataStore pi,
DoubleDataStore lambda,
DoubleDataStore coredist)
Extract all clusters from the pi-lambda-representation.
|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.
|
private Cluster<DendrogramModel> |
makeSingletonCluster(DBIDRef lead,
double depth)
Make the cluster for the given object
|
Clustering<DendrogramModel> |
run(Database database)
Runs the algorithm.
|
private static final Logging LOG
private int minClSize
private HierarchicalClusteringAlgorithm algorithm
public SimplifiedHierarchyExtraction(HierarchicalClusteringAlgorithm algorithm, int minClSize)
algorithm
- Algorithm to runminClSize
- Minimum cluster sizepublic Clustering<DendrogramModel> run(Database database)
Algorithm
run
in interface Algorithm
run
in interface ClusteringAlgorithm<Clustering<DendrogramModel>>
database
- the database to run the algorithm onprivate Clustering<DendrogramModel> extractClusters(DBIDs ids, DBIDDataStore pi, DoubleDataStore lambda, DoubleDataStore coredist)
ids
- Object ids to processpi
- Pi storelambda
- Lambda storecoredist
- Core distancesprivate void addSingleton(SimplifiedHierarchyExtraction.TempCluster clus, DBIDRef id, double dist, boolean asCluster)
clus
- Current cluster.id
- Object to adddist
- DistanceasCluster
- Add as cluster (or only as id)private Cluster<DendrogramModel> makeSingletonCluster(DBIDRef lead, double depth)
lead
- Leading objectdepth
- Linkage depthpublic TypeInformation[] getInputTypeRestriction()
Algorithm
getInputTypeRestriction
in interface Algorithm
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.