
V - vector datatype@Title(value="K-Means") @Description(value="Finds a least-squared partitioning into k clusters.") @Reference(authors="S. Lloyd", title="Least squares quantization in PCM", booktitle="IEEE Transactions on Information Theory 28 (2): 129\u2013137.", url="http://dx.doi.org/10.1109/TIT.1982.1056489") public class KMeansLloyd<V extends NumberVector> extends AbstractKMeans<V,KMeansModel>
Reference:
S. Lloyd
Least squares quantization in PCM
IEEE Transactions on Information Theory 28 (2)
previously published as Bell Telephone Laboratories Paper
| Modifier and Type | Class and Description |
|---|---|
static class |
KMeansLloyd.Parameterizer<V extends NumberVector>
Parameterization class.
|
| Modifier and Type | Field and Description |
|---|---|
private static String |
KEY
Key for statistics logging.
|
private static Logging |
LOG
The logger for this class.
|
initializer, k, maxiterdistanceFunctionINIT_ID, K_ID, MAXITER_ID, SEED_IDDISTANCE_FUNCTION_ID| Constructor and Description |
|---|
KMeansLloyd(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization<? super V> initializer)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
Clustering<KMeansModel> |
run(Database database,
Relation<V> relation)
Run the clustering algorithm.
|
assignToNearestCluster, getInputTypeRestriction, incrementalUpdateMean, logVarstat, macQueenIterate, means, medians, setDistanceFunction, setK, updateAssignmentgetDistanceFunctionmakeParameterDistanceFunction, runclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrungetDistanceFunctionprivate static final Logging LOG
private static final String KEY
public KMeansLloyd(NumberVectorDistanceFunction<? super V> distanceFunction, int k, int maxiter, KMeansInitialization<? super V> initializer)
distanceFunction - distance functionk - k parametermaxiter - Maxiter parameterinitializer - Initialization methodpublic Clustering<KMeansModel> run(Database database, Relation<V> relation)
KMeansdatabase - Database to run on.relation - Relation to process.protected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<Clustering<KMeansModel>>Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.