
@Reference(authors="D. Guo", title="Coordinating computational and visual approaches for interactive feature selection and multivariate clustering", booktitle="Information Visualization, 2(4)", url="http://dx.doi.org/10.1057/palgrave.ivs.9500053") public class MCEDependenceMeasure extends AbstractDependenceMeasure
D. Guo
Coordinating computational and visual approaches for interactive feature
selection and multivariate clustering
Information Visualization, 2(4), 2003.
| Modifier and Type | Class and Description |
|---|---|
static class |
MCEDependenceMeasure.Parameterizer
Parameterization class.
|
| Modifier and Type | Field and Description |
|---|---|
static MCEDependenceMeasure |
STATIC
Static instance.
|
static int |
TARGET
Desired size: 35 observations.
|
| Constructor and Description |
|---|
MCEDependenceMeasure() |
| Modifier and Type | Method and Description |
|---|---|
private <A> ArrayList<int[]> |
buildPartitions(NumberArrayAdapter<?,A> adapter1,
A data1,
int len,
int depth)
Partitions an attribute.
|
<A,B> double |
dependence(NumberArrayAdapter<?,A> adapter1,
A data1,
NumberArrayAdapter<?,B> adapter2,
B data2)
Measure the dependence of two variables.
|
private void |
divide(int[] idx,
double[] data,
ArrayList<int[]> ret,
int start,
int end,
int depth)
Recursive call to further subdivide the array.
|
private double |
getMCEntropy(int[][] mat,
ArrayList<int[]> partsx,
ArrayList<int[]> partsy,
int size,
int gridsize,
double loggrid)
Compute the MCE entropy value.
|
private void |
intersectionMatrix(int[][] res,
ArrayList<int[]> partsx,
ArrayList<int[]> partsy,
int gridsize)
Intersect the two 1d grid decompositions, to obtain a 2d matrix.
|
private int |
intersectionSize(int[] px,
int[] py)
Compute the intersection of two sorted integer lists.
|
clamp, computeNormalizedRanks, dependence, dependence, dependence, discretize, index, ranks, ranks, size, size, sortedIndexpublic static final MCEDependenceMeasure STATIC
public static final int TARGET
public <A,B> double dependence(NumberArrayAdapter<?,A> adapter1, A data1, NumberArrayAdapter<?,B> adapter2, B data2)
DependenceMeasuredependence in interface DependenceMeasuredependence in class AbstractDependenceMeasureA - First array typeB - Second array typeadapter1 - First data adapterdata1 - First data setadapter2 - Second data adapterdata2 - Second data setprivate <A> ArrayList<int[]> buildPartitions(NumberArrayAdapter<?,A> adapter1, A data1, int len, int depth)
adapter1 - Data adapterdata1 - Data setlen - Length of datadepth - Splitting depthprivate void divide(int[] idx,
double[] data,
ArrayList<int[]> ret,
int start,
int end,
int depth)
idx - Object indexes.data - 1D data, sortedret - Output indexstart - Interval startend - Interval enddepth - Depthprivate void intersectionMatrix(int[][] res,
ArrayList<int[]> partsx,
ArrayList<int[]> partsy,
int gridsize)
res - Output matrix to fillpartsx - Partitions in first componentpartsy - Partitions in second component.gridsize - Size of partition decompositionprivate int intersectionSize(int[] px,
int[] py)
px - First listpy - Second listprivate double getMCEntropy(int[][] mat,
ArrayList<int[]> partsx,
ArrayList<int[]> partsy,
int size,
int gridsize,
double loggrid)
mat - Partition size matrixpartsx - Partitions on Xpartsy - Partitions on Ysize - Data set sizegridsize - Size of gridsloggrid - Logarithm of grid sizes, for normalizationCopyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.