V
- vector datatype@Title(value="K-Medians") @Reference(title="Clustering via Concave Minimization", authors="P. S. Bradley, O. L. Mangasarian, W. N. Street", booktitle="Advances in Neural Information Processing Systems", url="https://papers.nips.cc/paper/1260-clustering-via-concave-minimization.pdf") public class KMediansLloyd<V extends NumberVector> extends AbstractKMeans<V,MeanModel>
KMedoidsPAM
instead).
Reference:
Clustering via Concave Minimization
P. S. Bradley, O. L. Mangasarian, W. N. Street
in: Advances in Neural Information Processing Systems (NIPS)
Modifier and Type | Class and Description |
---|---|
static class |
KMediansLloyd.Parameterizer<V extends NumberVector>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private static String |
KEY
Key for statistics logging.
|
private static Logging |
LOG
The logger for this class.
|
initializer, k, maxiter
distanceFunction
INIT_ID, K_ID, MAXITER_ID, SEED_ID
DISTANCE_FUNCTION_ID
Constructor and Description |
---|
KMediansLloyd(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization<? super V> initializer)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
Clustering<MeanModel> |
run(Database database,
Relation<V> relation)
Run the clustering algorithm.
|
assignToNearestCluster, getInputTypeRestriction, incrementalUpdateMean, logVarstat, macQueenIterate, means, medians, setDistanceFunction, setK, updateAssignment
getDistanceFunction
makeParameterDistanceFunction, run
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
run
getDistanceFunction
private static final Logging LOG
private static final String KEY
public KMediansLloyd(NumberVectorDistanceFunction<? super V> distanceFunction, int k, int maxiter, KMeansInitialization<? super V> initializer)
distanceFunction
- distance functionk
- k parametermaxiter
- Maxiter parameterinitializer
- Initialization methodpublic Clustering<MeanModel> run(Database database, Relation<V> relation)
KMeans
database
- Database to run on.relation
- Relation to process.protected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<Clustering<MeanModel>>
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.