|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use DistanceQuery | |
---|---|
de.lmu.ifi.dbs.elki.algorithm | Algorithms suitable as a task for the KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms
Clustering algorithms are supposed to implement the Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms |
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. |
de.lmu.ifi.dbs.elki.algorithm.outlier | Outlier detection algorithms |
de.lmu.ifi.dbs.elki.algorithm.statistics | Statistical analysis algorithms The algorithms in this package perform statistical analysis of the data (e.g. compute distributions, distance distributions etc.) |
de.lmu.ifi.dbs.elki.application.visualization | Visualization applications in ELKI. |
de.lmu.ifi.dbs.elki.database | ELKI database layer - loading, storing, indexing and accessing data |
de.lmu.ifi.dbs.elki.database.query | Database queries - computing distances, neighbors, similarities - API and general documentation. |
de.lmu.ifi.dbs.elki.database.query.distance | Prepared queries for distances. |
de.lmu.ifi.dbs.elki.database.query.knn | Prepared queries for k nearest neighbor (kNN) queries. |
de.lmu.ifi.dbs.elki.database.query.range | Prepared queries for ε-range queries. |
de.lmu.ifi.dbs.elki.database.query.rknn | Prepared queries for reverse k nearest neighbor (rkNN) queries. |
de.lmu.ifi.dbs.elki.distance.distancefunction | Distance functions for use within ELKI. |
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter | Distance functions deriving distances from e.g. similarity measures |
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation | Distance functions using correlations. |
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace | Distance functions based on subspaces. |
de.lmu.ifi.dbs.elki.index | Index structure implementations |
de.lmu.ifi.dbs.elki.index.preprocessed.knn | Indexes providing KNN and rKNN data. |
de.lmu.ifi.dbs.elki.index.tree.metrical | Tree-based index structures for metrical vector spaces. |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants | M-Tree and variants. |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees | Metrical index structures based on the concepts of the M-Tree supporting processing of reverse k nearest neighbor queries by using the k-nn distances of the entries. |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | MkAppTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop | MkCoPTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | MkMaxTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab | MkTabTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree | MTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query | Classes for performing queries (knn, range, ...) on metrical trees. |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.split | Splitting strategies of nodes in an M-Tree (and variants). |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu | DeLiCluTree |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query | Queries on the R-Tree family of indexes: kNN and range queries. |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | RStarTree |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.algorithm |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm with parameters of type DistanceQuery | |
---|---|
private D |
KNNJoin.processDataPages(DistanceQuery<V,D> distQ,
N pr,
N ps,
WritableDataStore<KNNHeap<D>> knnLists,
D pr_knn_distance)
Processes the two data pages pr and ps and determines the k-nearest neighbors of pr in ps. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.algorithm.clustering |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering that return DistanceQuery | |
---|---|
protected DistanceQuery<V,DoubleDistance> |
AbstractProjectedClustering.getDistanceQuery(Database database)
Returns the distance function. |
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering with parameters of type DistanceQuery | |
---|---|
private void |
SLINK.step2(DBID newID,
DBIDs processedIDs,
DistanceQuery<O,D> distFunc,
WritableDataStore<D> m)
Second step: Determine the pairwise distances from all objects in the pointer representation to the new object with the specified id. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with parameters of type DistanceQuery | |
---|---|
private void |
ORCLUS.assign(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
List<ORCLUS.ORCLUSCluster> clusters)
Creates a partitioning of the database by assigning each object to its closest seed. |
private void |
ERiC.buildHierarchy(SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> clusterMap,
DistanceQuery<V,IntegerDistance> query)
|
private Matrix |
ORCLUS.findBasis(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster cluster,
int dim)
Finds the basis of the subspace of dimensionality dim for the
specified cluster. |
ClusteringAlgorithm<Clustering<Model>> |
COPAC.getPartitionAlgorithm(DistanceQuery<V,D> query)
Returns the partition algorithm. |
private void |
ORCLUS.merge(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
List<ORCLUS.ORCLUSCluster> clusters,
int k_new,
int d_new,
IndefiniteProgress cprogress)
Reduces the number of seeds to k_new |
private ORCLUS.ProjectedEnergy |
ORCLUS.projectedEnergy(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster c_i,
ORCLUS.ORCLUSCluster c_j,
int i,
int j,
int dim)
Computes the projected energy of the specified clusters. |
private Clustering<Model> |
COPAC.runPartitionAlgorithm(Relation<V> relation,
Map<Integer,DBIDs> partitionMap,
DistanceQuery<V,D> query)
Runs the partition algorithm and creates the result. |
private ORCLUS.ORCLUSCluster |
ORCLUS.union(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster c1,
ORCLUS.ORCLUSCluster c2,
int dim)
Returns the union of the two specified clusters. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with parameters of type DistanceQuery | |
---|---|
private Map<DBID,Set<Integer>> |
PROCLUS.findDimensions(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Determines the set of correlated dimensions for each medoid in the specified medoid set. |
private Map<DBID,List<DistanceResultPair<DoubleDistance>>> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the objects in the sphere centered at m with radius minDist are determined, where minDist is the minimum distance between medoid m and any other medoid m_i. |
private ModifiableDBIDs |
PROCLUS.greedy(DistanceQuery<V,DoubleDistance> distFunc,
DBIDs sampleSet,
int m,
Random random)
Returns a piercing set of k medoids from the specified sample set. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.algorithm.outlier |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.outlier with parameters of type DistanceQuery | |
---|---|
protected List<DistanceResultPair<D>> |
ReferenceBasedOutlierDetection.computeDistanceVector(V refPoint,
Relation<V> database,
DistanceQuery<V,D> distFunc)
Computes for each object the distance to one reference point. |
protected DataStore<Double> |
DBOutlierDetection.computeOutlierScores(Database database,
DistanceQuery<O,D> distFunc,
D neighborhoodSize)
|
protected abstract DataStore<Double> |
AbstractDBOutlier.computeOutlierScores(Database database,
DistanceQuery<O,D> distFunc,
D d)
computes an outlier score for each object of the database. |
protected DataStore<Double> |
DBOutlierScore.computeOutlierScores(Database database,
DistanceQuery<O,D> distFunc,
D d)
|
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.algorithm.statistics |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.statistics with parameters of type DistanceQuery | |
---|---|
private DoubleMinMax |
DistanceStatisticsWithClasses.exactMinMax(Relation<O> database,
DistanceQuery<O,D> distFunc)
|
private DoubleMinMax |
DistanceStatisticsWithClasses.sampleMinMax(Relation<O> database,
DistanceQuery<O,D> distFunc)
|
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.application.visualization |
---|
Fields in de.lmu.ifi.dbs.elki.application.visualization declared as DistanceQuery | |
---|---|
private DistanceQuery<O,D> |
KNNExplorer.ExplorerWindow.distanceQuery
Holds the instance of the distance function specified by KNNExplorer.DISTANCE_FUNCTION_ID . |
Methods in de.lmu.ifi.dbs.elki.application.visualization with parameters of type DistanceQuery | |
---|---|
void |
KNNExplorer.ExplorerWindow.run(Database db,
DistanceQuery<O,D> distanceQuery)
Process the given Database and distance function. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.database |
---|
Methods in de.lmu.ifi.dbs.elki.database that return DistanceQuery | ||
---|---|---|
static
|
QueryUtil.getDistanceQuery(Database database,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a distance query for a given distance function, automatically choosing a relation. |
|
|
AbstractDatabase.getDistanceQuery(Relation<O> objQuery,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
|
|
|
Database.getDistanceQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get the distance query for a particular distance function. |
Methods in de.lmu.ifi.dbs.elki.database with parameters of type DistanceQuery | ||
---|---|---|
|
AbstractDatabase.getKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints)
|
|
|
Database.getKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints)
Get a KNN query object for the given distance query. |
|
static
|
QueryUtil.getLinearScanKNNQuery(DistanceQuery<O,D> distanceQuery)
Get a linear scan query for the given distance query. |
|
static
|
QueryUtil.getLinearScanRangeQuery(DistanceQuery<O,D> distanceQuery)
Get a linear scan query for the given distance query. |
|
|
AbstractDatabase.getRangeQuery(DistanceQuery<O,D> distanceQuery,
Object... hints)
|
|
|
Database.getRangeQuery(DistanceQuery<O,D> distanceQuery,
Object... hints)
Get a range query object for the given distance query. |
|
|
AbstractDatabase.getRKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints)
|
|
|
Database.getRKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints)
Get a rKNN query object for the given distance query. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.database.query |
---|
Subinterfaces of DistanceQuery in de.lmu.ifi.dbs.elki.database.query | |
---|---|
interface |
DistanceSimilarityQuery<O,D extends Distance<D>>
Interface that is a combination of distance and a similarity function. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.database.query.distance |
---|
Subinterfaces of DistanceQuery in de.lmu.ifi.dbs.elki.database.query.distance | |
---|---|
interface |
SpatialDistanceQuery<V extends SpatialComparable,D extends Distance<D>>
Query interface for spatial distance queries. |
Classes in de.lmu.ifi.dbs.elki.database.query.distance that implement DistanceQuery | |
---|---|
class |
AbstractDatabaseDistanceQuery<O,D extends Distance<D>>
Run a database query in a database context. |
class |
AbstractDistanceQuery<O,D extends Distance<D>>
A distance query serves as adapter layer for database and primitive distances. |
class |
DBIDDistanceQuery<D extends Distance<D>>
Run a distance query based on DBIDs |
class |
PrimitiveDistanceQuery<O,D extends Distance<D>>
Run a database query in a database context. |
class |
PrimitiveDistanceSimilarityQuery<O,D extends Distance<D>>
Combination query class, for convenience. |
class |
SpatialPrimitiveDistanceQuery<V extends SpatialComparable,D extends Distance<D>>
Distance query for spatial distance functions |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.database.query.knn |
---|
Fields in de.lmu.ifi.dbs.elki.database.query.knn declared as DistanceQuery | |
---|---|
protected DistanceQuery<O,D> |
AbstractDistanceKNNQuery.distanceQuery
Hold the distance function to be used. |
Methods in de.lmu.ifi.dbs.elki.database.query.knn that return DistanceQuery | |
---|---|
DistanceQuery<O,D> |
KNNQuery.getDistanceQuery()
Get the distance query for this function. |
DistanceQuery<O,D> |
PreprocessorKNNQuery.getDistanceQuery()
|
DistanceQuery<O,D> |
AbstractDistanceKNNQuery.getDistanceQuery()
|
Constructors in de.lmu.ifi.dbs.elki.database.query.knn with parameters of type DistanceQuery | |
---|---|
AbstractDistanceKNNQuery(DistanceQuery<O,D> distanceQuery)
Constructor. |
|
LinearScanKNNQuery(DistanceQuery<O,D> distanceQuery)
Constructor. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.database.query.range |
---|
Fields in de.lmu.ifi.dbs.elki.database.query.range declared as DistanceQuery | |
---|---|
protected DistanceQuery<O,D> |
AbstractDistanceRangeQuery.distanceQuery
Hold the distance function to be used. |
Constructors in de.lmu.ifi.dbs.elki.database.query.range with parameters of type DistanceQuery | |
---|---|
AbstractDistanceRangeQuery(DistanceQuery<O,D> distanceQuery)
Constructor. |
|
LinearScanRangeQuery(DistanceQuery<O,D> distanceQuery)
Constructor. |
|
LinearScanRawDoubleDistanceRangeQuery(DistanceQuery<O,DoubleDistance> distanceQuery)
Constructor. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.database.query.rknn |
---|
Fields in de.lmu.ifi.dbs.elki.database.query.rknn declared as DistanceQuery | |
---|---|
protected DistanceQuery<O,D> |
AbstractRKNNQuery.distanceQuery
Hold the distance function to be used. |
Constructors in de.lmu.ifi.dbs.elki.database.query.rknn with parameters of type DistanceQuery | |
---|---|
AbstractRKNNQuery(DistanceQuery<O,D> distanceQuery)
Constructor. |
|
LinearScanRKNNQuery(DistanceQuery<O,D> distanceQuery,
KNNQuery<O,D> knnQuery,
Integer maxk)
Constructor. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.distance.distancefunction |
---|
Subinterfaces of DistanceQuery in de.lmu.ifi.dbs.elki.distance.distancefunction | |
---|---|
static interface |
FilteredLocalPCABasedDistanceFunction.Instance<T extends NumberVector<?,?>,I extends Index,D extends Distance<D>>
Instance produced by the distance function. |
static interface |
IndexBasedDistanceFunction.Instance<T,I extends Index,D extends Distance<D>>
Instance interface for Index based distance functions. |
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction that implement DistanceQuery | |
---|---|
static class |
AbstractDatabaseDistanceFunction.Instance<O,D extends Distance<D>>
The actual instance bound to a particular database. |
static class |
AbstractIndexBasedDistanceFunction.Instance<O,I extends Index,D extends Distance<D>,F extends DistanceFunction<? super O,D>>
The actual instance bound to a particular database. |
static class |
LocallyWeightedDistanceFunction.Instance<V extends NumberVector<?,?>>
Instance of this distance for a particular database. |
class |
MinKDistance.Instance<T extends O>
Instance for an actual database. |
static class |
SharedNearestNeighborJaccardDistanceFunction.Instance<T>
Actual instance for a dataset. |
Fields in de.lmu.ifi.dbs.elki.distance.distancefunction declared as DistanceQuery | |
---|---|
(package private) DistanceQuery<O,D> |
ProxyDistanceFunction.inner
Distance query |
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction that return DistanceQuery | ||
---|---|---|
DistanceQuery<O,D> |
ProxyDistanceFunction.getDistanceQuery()
Get the inner query |
|
|
AbstractDBIDDistanceFunction.instantiate(Relation<O> database)
|
|
|
DistanceFunction.instantiate(Relation<T> relation)
Instantiate with a database to get the actual distance query. |
|
|
MinKDistance.instantiate(Relation<T> relation)
|
|
|
AbstractPrimitiveDistanceFunction.instantiate(Relation<T> relation)
Instantiate with a database to get the actual distance query. |
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction with parameters of type DistanceQuery | ||
---|---|---|
static
|
ProxyDistanceFunction.proxy(DistanceQuery<O,D> inner)
Static method version. |
|
void |
ProxyDistanceFunction.setDistanceQuery(DistanceQuery<O,D> inner)
|
Constructors in de.lmu.ifi.dbs.elki.distance.distancefunction with parameters of type DistanceQuery | |
---|---|
ProxyDistanceFunction(DistanceQuery<O,D> inner)
Constructor |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter that implement DistanceQuery | |
---|---|
static class |
AbstractSimilarityAdapter.Instance<O>
Inner proxy class for SNN distance function. |
static class |
SimilarityAdapterArccos.Instance<O>
Distance function instance |
static class |
SimilarityAdapterLinear.Instance<O>
Distance function instance |
static class |
SimilarityAdapterLn.Instance<O>
Distance function instance |
Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter that return DistanceQuery | ||
---|---|---|
abstract
|
AbstractSimilarityAdapter.instantiate(Relation<T> database)
|
|
|
SimilarityAdapterLn.instantiate(Relation<T> database)
|
|
|
SimilarityAdapterLinear.instantiate(Relation<T> database)
|
|
|
SimilarityAdapterArccos.instantiate(Relation<T> database)
|
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation that implement DistanceQuery | |
---|---|
static class |
ERiCDistanceFunction.Instance<V extends NumberVector<?,?>>
The actual instance bound to a particular database. |
static class |
PCABasedCorrelationDistanceFunction.Instance<V extends NumberVector<?,?>>
The actual instance bound to a particular database. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace that implement DistanceQuery | |
---|---|
static class |
AbstractPreferenceVectorBasedCorrelationDistanceFunction.Instance<V extends NumberVector<?,?>,P extends PreferenceVectorIndex<V>>
Instance to compute the distances on an actual database. |
static class |
DiSHDistanceFunction.Instance<V extends NumberVector<?,?>>
The actual instance bound to a particular database. |
static class |
HiSCDistanceFunction.Instance<V extends NumberVector<?,?>>
The actual instance bound to a particular database. |
static class |
SubspaceDistanceFunction.Instance<V extends NumberVector<?,?>>
The actual instance bound to a particular database. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index |
---|
Methods in de.lmu.ifi.dbs.elki.index with parameters of type DistanceQuery | ||
---|---|---|
|
KNNIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints)
Get a KNN query object for the given distance query and k. |
|
|
RangeIndex.getRangeQuery(DistanceQuery<O,D> distanceQuery,
Object... hints)
Get a range query object for the given distance query and k. |
|
|
RKNNIndex.getRKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints)
Get a KNN query object for the given distance query and k. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.preprocessed.knn |
---|
Fields in de.lmu.ifi.dbs.elki.index.preprocessed.knn declared as DistanceQuery | |
---|---|
protected DistanceQuery<O,D> |
AbstractMaterializeKNNPreprocessor.distanceQuery
The distance query we used. |
Methods in de.lmu.ifi.dbs.elki.index.preprocessed.knn that return DistanceQuery | |
---|---|
DistanceQuery<O,D> |
AbstractMaterializeKNNPreprocessor.getDistanceQuery()
The distance query we used. |
Methods in de.lmu.ifi.dbs.elki.index.preprocessed.knn with parameters of type DistanceQuery | ||
---|---|---|
|
AbstractMaterializeKNNPreprocessor.getKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
|
|
MaterializeKNNAndRKNNPreprocessor.getRKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical that return DistanceQuery | |
---|---|
abstract DistanceQuery<O,D> |
MetricalIndexTree.getDistanceQuery()
Returns the distance function of this metrical index. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants |
---|
Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants declared as DistanceQuery | |
---|---|
protected DistanceQuery<O,D> |
AbstractMTree.distanceQuery
The distance query |
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants that return DistanceQuery | |
---|---|
DistanceQuery<O,D> |
AbstractMTree.getDistanceQuery()
|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants with parameters of type DistanceQuery | |
---|---|
AbstractMTree(PageFile<N> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction)
Constructor. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees |
---|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees with parameters of type DistanceQuery | |
---|---|
AbstractMkTree(PageFile<N> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction)
Constructor. |
|
AbstractMkTreeUnified(PageFile<N> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type DistanceQuery | ||
---|---|---|
|
MkAppTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
|
|
MkAppTreeIndex.getRangeQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
|
|
MkAppTreeIndex.getRKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type DistanceQuery | |
---|---|
MkAppTree(PageFile<MkAppTreeNode<O,D>> pageFile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max,
int p,
boolean log)
Constructor. |
|
MkAppTreeIndex(Relation<O> relation,
PageFile<MkAppTreeNode<O,D>> pageFile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max,
int p,
boolean log)
Constructor. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type DistanceQuery | ||
---|---|---|
|
MkCoPDirectoryEntry.approximateConservativeKnnDistance(int k,
DistanceQuery<O,D> distanceFunction)
Returns the conservative approximated knn distance of the entry. |
|
|
MkCoPEntry.approximateConservativeKnnDistance(int k,
DistanceQuery<O,D> distanceFunction)
Returns the conservative approximated knn distance of the entry. |
|
|
MkCoPLeafEntry.approximateConservativeKnnDistance(int k,
DistanceQuery<O,D> distanceFunction)
Returns the conservative approximated knn distance of the entry. |
|
|
MkCoPLeafEntry.approximateProgressiveKnnDistance(int k,
DistanceQuery<O,D> distanceFunction)
Returns the progressive approximated knn distance of the entry. |
|
|
ApproximationLine.getApproximatedKnnDistance(int k,
DistanceQuery<O,D> distanceFunction)
Returns the approximated knn-distance at the specified k. |
|
|
MkCoPTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
|
|
MkCoPTreeIndex.getRangeQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
|
|
MkCoPTreeIndex.getRKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type DistanceQuery | |
---|---|
MkCoPTree(PageFile<MkCoPTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
|
MkCoPTreeIndex(Relation<O> relation,
PageFile<MkCoPTreeNode<O,D>> pageFile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax with parameters of type DistanceQuery | ||
---|---|---|
|
MkMaxTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
|
|
MkMaxTreeIndex.getRangeQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
|
|
MkMaxTreeIndex.getRKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
|
protected D |
MkMaxTreeNode.kNNDistance(DistanceQuery<O,D> distanceFunction)
Determines and returns the k-nearest neighbor distance of this node as the maximum of the k-nearest neighbor distances of all entries. |
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax with parameters of type DistanceQuery | |
---|---|
MkMaxTree(PageFile<MkMaxTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
|
MkMaxTreeIndex(Relation<O> relation,
PageFile<MkMaxTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab with parameters of type DistanceQuery | ||
---|---|---|
|
MkTabTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
|
|
MkTabTreeIndex.getRangeQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
|
|
MkTabTreeIndex.getRKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
|
protected List<D> |
MkTabTreeNode.kNNDistances(DistanceQuery<O,D> distanceFunction)
Determines and returns the knn distance of this node as the maximum knn distance of all entries. |
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab with parameters of type DistanceQuery | |
---|---|
MkTabTree(PageFile<MkTabTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
|
MkTabTreeIndex(Relation<O> relation,
PageFile<MkTabTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree with parameters of type DistanceQuery | ||
---|---|---|
|
MTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
|
|
MTreeIndex.getRangeQuery(DistanceQuery<O,S> distanceQuery,
Object... hints)
|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree with parameters of type DistanceQuery | |
---|---|
MTree(PageFile<MTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction)
Constructor. |
|
MTreeIndex(Relation<O> relation,
PageFile<MTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction)
Constructor. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query |
---|
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query with parameters of type DistanceQuery | |
---|---|
MetricalIndexKNNQuery(AbstractMTree<O,D,?,?> index,
DistanceQuery<O,D> distanceQuery)
Constructor. |
|
MetricalIndexRangeQuery(AbstractMTree<O,D,?,?> index,
DistanceQuery<O,D> distanceQuery)
Constructor. |
|
MkTreeRKNNQuery(AbstractMkTree<O,D,?,?> index,
DistanceQuery<O,D> distanceQuery)
Constructor. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.split |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.split with parameters of type DistanceQuery | |
---|---|
(package private) Assignments<D,E> |
MTreeSplit.balancedPartition(N node,
DBID routingObject1,
DBID routingObject2,
DistanceQuery<O,D> distanceFunction)
Creates a balanced partition of the entries of the specified node. |
private void |
MLBDistSplit.promote(N node,
DistanceQuery<O,D> distanceFunction)
Selects the second object of the specified node to be promoted and stored into the parent node and partitions the entries according to the M_LB_DIST strategy. |
private void |
MRadSplit.promote(N node,
DistanceQuery<O,D> distanceFunction)
Selects two objects of the specified node to be promoted and stored into the parent node. |
Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.split with parameters of type DistanceQuery | |
---|---|
MLBDistSplit(N node,
DistanceQuery<O,D> distanceFunction)
Creates a new split object. |
|
MRadSplit(N node,
DistanceQuery<O,D> distanceFunction)
Creates a new split object. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu with parameters of type DistanceQuery | ||
---|---|---|
|
DeLiCluTreeIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints)
|
|
|
DeLiCluTreeIndex.getRangeQuery(DistanceQuery<O,D> distanceQuery,
Object... hints)
|
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query |
---|
Constructors in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query with parameters of type DistanceQuery | |
---|---|
DoubleDistanceRStarTreeKNNQuery(AbstractRStarTree<?,?> tree,
DistanceQuery<O,DoubleDistance> distanceQuery,
SpatialPrimitiveDoubleDistanceFunction<? super O> distanceFunction)
Constructor. |
|
DoubleDistanceRStarTreeRangeQuery(AbstractRStarTree<?,?> tree,
DistanceQuery<O,DoubleDistance> distanceQuery,
SpatialPrimitiveDoubleDistanceFunction<? super O> distanceFunction)
Constructor. |
Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar with parameters of type DistanceQuery | ||
---|---|---|
|
RStarTreeIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints)
|
|
|
RStarTreeIndex.getRangeQuery(DistanceQuery<O,D> distanceQuery,
Object... hints)
|
|
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |