Uses of Interface
de.lmu.ifi.dbs.elki.database.query.distance.DistanceQuery

Packages that use DistanceQuery
de.lmu.ifi.dbs.elki.algorithm Algorithms suitable as a task for the KDDTask main routine. 
de.lmu.ifi.dbs.elki.algorithm.clustering Clustering algorithms Clustering algorithms are supposed to implement the Algorithm-Interface. 
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation Correlation clustering algorithms 
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. 
de.lmu.ifi.dbs.elki.algorithm.outlier Outlier detection algorithms 
de.lmu.ifi.dbs.elki.algorithm.statistics Statistical analysis algorithms The algorithms in this package perform statistical analysis of the data (e.g. compute distributions, distance distributions etc.) 
de.lmu.ifi.dbs.elki.application.visualization Visualization applications in ELKI. 
de.lmu.ifi.dbs.elki.database ELKI database layer - loading, storing, indexing and accessing data 
de.lmu.ifi.dbs.elki.database.query Database queries - computing distances, neighbors, similarities - API and general documentation. 
de.lmu.ifi.dbs.elki.database.query.distance Prepared queries for distances. 
de.lmu.ifi.dbs.elki.database.query.knn Prepared queries for k nearest neighbor (kNN) queries. 
de.lmu.ifi.dbs.elki.database.query.range Prepared queries for ε-range queries. 
de.lmu.ifi.dbs.elki.database.query.rknn Prepared queries for reverse k nearest neighbor (rkNN) queries. 
de.lmu.ifi.dbs.elki.distance.distancefunction Distance functions for use within ELKI. 
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter Distance functions deriving distances from e.g. similarity measures 
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation Distance functions using correlations. 
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace Distance functions based on subspaces. 
de.lmu.ifi.dbs.elki.index Index structure implementations 
de.lmu.ifi.dbs.elki.index.preprocessed.knn Indexes providing KNN and rKNN data. 
de.lmu.ifi.dbs.elki.index.tree.metrical Tree-based index structures for metrical vector spaces. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants M-Tree and variants. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees Metrical index structures based on the concepts of the M-Tree supporting processing of reverse k nearest neighbor queries by using the k-nn distances of the entries. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp MkAppTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop MkCoPTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax MkMaxTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab MkTabTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree MTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query Classes for performing queries (knn, range, ...) on metrical trees. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.split Splitting strategies of nodes in an M-Tree (and variants). 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu DeLiCluTree 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query Queries on the R-Tree family of indexes: kNN and range queries. 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar RStarTree 
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.algorithm
 

Methods in de.lmu.ifi.dbs.elki.algorithm with parameters of type DistanceQuery
private  D KNNJoin.processDataPages(DistanceQuery<V,D> distQ, N pr, N ps, WritableDataStore<KNNHeap<D>> knnLists, D pr_knn_distance)
          Processes the two data pages pr and ps and determines the k-nearest neighbors of pr in ps.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.algorithm.clustering
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering that return DistanceQuery
protected  DistanceQuery<V,DoubleDistance> AbstractProjectedClustering.getDistanceQuery(Database database)
          Returns the distance function.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering with parameters of type DistanceQuery
private  void SLINK.step2(DBID newID, DBIDs processedIDs, DistanceQuery<O,D> distFunc, WritableDataStore<D> m)
          Second step: Determine the pairwise distances from all objects in the pointer representation to the new object with the specified id.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with parameters of type DistanceQuery
private  void ORCLUS.assign(Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, List<ORCLUS.ORCLUSCluster> clusters)
          Creates a partitioning of the database by assigning each object to its closest seed.
private  void ERiC.buildHierarchy(SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> clusterMap, DistanceQuery<V,IntegerDistance> query)
           
private  Matrix ORCLUS.findBasis(Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, ORCLUS.ORCLUSCluster cluster, int dim)
          Finds the basis of the subspace of dimensionality dim for the specified cluster.
 ClusteringAlgorithm<Clustering<Model>> COPAC.getPartitionAlgorithm(DistanceQuery<V,D> query)
          Returns the partition algorithm.
private  void ORCLUS.merge(Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, List<ORCLUS.ORCLUSCluster> clusters, int k_new, int d_new, IndefiniteProgress cprogress)
          Reduces the number of seeds to k_new
private  ORCLUS.ProjectedEnergy ORCLUS.projectedEnergy(Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, ORCLUS.ORCLUSCluster c_i, ORCLUS.ORCLUSCluster c_j, int i, int j, int dim)
          Computes the projected energy of the specified clusters.
private  Clustering<Model> COPAC.runPartitionAlgorithm(Relation<V> relation, Map<Integer,DBIDs> partitionMap, DistanceQuery<V,D> query)
          Runs the partition algorithm and creates the result.
private  ORCLUS.ORCLUSCluster ORCLUS.union(Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, ORCLUS.ORCLUSCluster c1, ORCLUS.ORCLUSCluster c2, int dim)
          Returns the union of the two specified clusters.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with parameters of type DistanceQuery
private  Map<DBID,Set<Integer>> PROCLUS.findDimensions(DBIDs medoids, Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, RangeQuery<V,DoubleDistance> rangeQuery)
          Determines the set of correlated dimensions for each medoid in the specified medoid set.
private  Map<DBID,List<DistanceResultPair<DoubleDistance>>> PROCLUS.getLocalities(DBIDs medoids, Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, RangeQuery<V,DoubleDistance> rangeQuery)
          Computes the localities of the specified medoids: for each medoid m the objects in the sphere centered at m with radius minDist are determined, where minDist is the minimum distance between medoid m and any other medoid m_i.
private  ModifiableDBIDs PROCLUS.greedy(DistanceQuery<V,DoubleDistance> distFunc, DBIDs sampleSet, int m, Random random)
          Returns a piercing set of k medoids from the specified sample set.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.algorithm.outlier
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier with parameters of type DistanceQuery
protected  List<DistanceResultPair<D>> ReferenceBasedOutlierDetection.computeDistanceVector(V refPoint, Relation<V> database, DistanceQuery<V,D> distFunc)
          Computes for each object the distance to one reference point.
protected  DataStore<Double> DBOutlierDetection.computeOutlierScores(Database database, DistanceQuery<O,D> distFunc, D neighborhoodSize)
           
protected abstract  DataStore<Double> AbstractDBOutlier.computeOutlierScores(Database database, DistanceQuery<O,D> distFunc, D d)
          computes an outlier score for each object of the database.
protected  DataStore<Double> DBOutlierScore.computeOutlierScores(Database database, DistanceQuery<O,D> distFunc, D d)
           
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.algorithm.statistics
 

Methods in de.lmu.ifi.dbs.elki.algorithm.statistics with parameters of type DistanceQuery
private  DoubleMinMax DistanceStatisticsWithClasses.exactMinMax(Relation<O> database, DistanceQuery<O,D> distFunc)
           
private  DoubleMinMax DistanceStatisticsWithClasses.sampleMinMax(Relation<O> database, DistanceQuery<O,D> distFunc)
           
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.application.visualization
 

Fields in de.lmu.ifi.dbs.elki.application.visualization declared as DistanceQuery
private  DistanceQuery<O,D> KNNExplorer.ExplorerWindow.distanceQuery
          Holds the instance of the distance function specified by KNNExplorer.DISTANCE_FUNCTION_ID.
 

Methods in de.lmu.ifi.dbs.elki.application.visualization with parameters of type DistanceQuery
 void KNNExplorer.ExplorerWindow.run(Database db, DistanceQuery<O,D> distanceQuery)
          Process the given Database and distance function.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.database
 

Methods in de.lmu.ifi.dbs.elki.database that return DistanceQuery
static
<O,D extends Distance<D>>
DistanceQuery<O,D>
QueryUtil.getDistanceQuery(Database database, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get a distance query for a given distance function, automatically choosing a relation.
<O,D extends Distance<D>>
DistanceQuery<O,D>
AbstractDatabase.getDistanceQuery(Relation<O> objQuery, DistanceFunction<? super O,D> distanceFunction, Object... hints)
           
<O,D extends Distance<D>>
DistanceQuery<O,D>
Database.getDistanceQuery(Relation<O> relation, DistanceFunction<? super O,D> distanceFunction, Object... hints)
          Get the distance query for a particular distance function.
 

Methods in de.lmu.ifi.dbs.elki.database with parameters of type DistanceQuery
<O,D extends Distance<D>>
KNNQuery<O,D>
AbstractDatabase.getKNNQuery(DistanceQuery<O,D> distanceQuery, Object... hints)
           
<O,D extends Distance<D>>
KNNQuery<O,D>
Database.getKNNQuery(DistanceQuery<O,D> distanceQuery, Object... hints)
          Get a KNN query object for the given distance query.
static
<O,D extends Distance<D>>
KNNQuery<O,D>
QueryUtil.getLinearScanKNNQuery(DistanceQuery<O,D> distanceQuery)
          Get a linear scan query for the given distance query.
static
<O,D extends Distance<D>>
RangeQuery<O,D>
QueryUtil.getLinearScanRangeQuery(DistanceQuery<O,D> distanceQuery)
          Get a linear scan query for the given distance query.
<O,D extends Distance<D>>
RangeQuery<O,D>
AbstractDatabase.getRangeQuery(DistanceQuery<O,D> distanceQuery, Object... hints)
           
<O,D extends Distance<D>>
RangeQuery<O,D>
Database.getRangeQuery(DistanceQuery<O,D> distanceQuery, Object... hints)
          Get a range query object for the given distance query.
<O,D extends Distance<D>>
RKNNQuery<O,D>
AbstractDatabase.getRKNNQuery(DistanceQuery<O,D> distanceQuery, Object... hints)
           
<O,D extends Distance<D>>
RKNNQuery<O,D>
Database.getRKNNQuery(DistanceQuery<O,D> distanceQuery, Object... hints)
          Get a rKNN query object for the given distance query.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.database.query
 

Subinterfaces of DistanceQuery in de.lmu.ifi.dbs.elki.database.query
 interface DistanceSimilarityQuery<O,D extends Distance<D>>
          Interface that is a combination of distance and a similarity function.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.database.query.distance
 

Subinterfaces of DistanceQuery in de.lmu.ifi.dbs.elki.database.query.distance
 interface SpatialDistanceQuery<V extends SpatialComparable,D extends Distance<D>>
          Query interface for spatial distance queries.
 

Classes in de.lmu.ifi.dbs.elki.database.query.distance that implement DistanceQuery
 class AbstractDatabaseDistanceQuery<O,D extends Distance<D>>
          Run a database query in a database context.
 class AbstractDistanceQuery<O,D extends Distance<D>>
          A distance query serves as adapter layer for database and primitive distances.
 class DBIDDistanceQuery<D extends Distance<D>>
          Run a distance query based on DBIDs
 class PrimitiveDistanceQuery<O,D extends Distance<D>>
          Run a database query in a database context.
 class PrimitiveDistanceSimilarityQuery<O,D extends Distance<D>>
          Combination query class, for convenience.
 class SpatialPrimitiveDistanceQuery<V extends SpatialComparable,D extends Distance<D>>
          Distance query for spatial distance functions
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.database.query.knn
 

Fields in de.lmu.ifi.dbs.elki.database.query.knn declared as DistanceQuery
protected  DistanceQuery<O,D> AbstractDistanceKNNQuery.distanceQuery
          Hold the distance function to be used.
 

Methods in de.lmu.ifi.dbs.elki.database.query.knn that return DistanceQuery
 DistanceQuery<O,D> KNNQuery.getDistanceQuery()
          Get the distance query for this function.
 DistanceQuery<O,D> PreprocessorKNNQuery.getDistanceQuery()
           
 DistanceQuery<O,D> AbstractDistanceKNNQuery.getDistanceQuery()
           
 

Constructors in de.lmu.ifi.dbs.elki.database.query.knn with parameters of type DistanceQuery
AbstractDistanceKNNQuery(DistanceQuery<O,D> distanceQuery)
          Constructor.
LinearScanKNNQuery(DistanceQuery<O,D> distanceQuery)
          Constructor.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.database.query.range
 

Fields in de.lmu.ifi.dbs.elki.database.query.range declared as DistanceQuery
protected  DistanceQuery<O,D> AbstractDistanceRangeQuery.distanceQuery
          Hold the distance function to be used.
 

Constructors in de.lmu.ifi.dbs.elki.database.query.range with parameters of type DistanceQuery
AbstractDistanceRangeQuery(DistanceQuery<O,D> distanceQuery)
          Constructor.
LinearScanRangeQuery(DistanceQuery<O,D> distanceQuery)
          Constructor.
LinearScanRawDoubleDistanceRangeQuery(DistanceQuery<O,DoubleDistance> distanceQuery)
          Constructor.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.database.query.rknn
 

Fields in de.lmu.ifi.dbs.elki.database.query.rknn declared as DistanceQuery
protected  DistanceQuery<O,D> AbstractRKNNQuery.distanceQuery
          Hold the distance function to be used.
 

Constructors in de.lmu.ifi.dbs.elki.database.query.rknn with parameters of type DistanceQuery
AbstractRKNNQuery(DistanceQuery<O,D> distanceQuery)
          Constructor.
LinearScanRKNNQuery(DistanceQuery<O,D> distanceQuery, KNNQuery<O,D> knnQuery, Integer maxk)
          Constructor.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.distance.distancefunction
 

Subinterfaces of DistanceQuery in de.lmu.ifi.dbs.elki.distance.distancefunction
static interface FilteredLocalPCABasedDistanceFunction.Instance<T extends NumberVector<?,?>,I extends Index,D extends Distance<D>>
          Instance produced by the distance function.
static interface IndexBasedDistanceFunction.Instance<T,I extends Index,D extends Distance<D>>
          Instance interface for Index based distance functions.
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction that implement DistanceQuery
static class AbstractDatabaseDistanceFunction.Instance<O,D extends Distance<D>>
          The actual instance bound to a particular database.
static class AbstractIndexBasedDistanceFunction.Instance<O,I extends Index,D extends Distance<D>,F extends DistanceFunction<? super O,D>>
          The actual instance bound to a particular database.
static class LocallyWeightedDistanceFunction.Instance<V extends NumberVector<?,?>>
          Instance of this distance for a particular database.
 class MinKDistance.Instance<T extends O>
          Instance for an actual database.
static class SharedNearestNeighborJaccardDistanceFunction.Instance<T>
          Actual instance for a dataset.
 

Fields in de.lmu.ifi.dbs.elki.distance.distancefunction declared as DistanceQuery
(package private)  DistanceQuery<O,D> ProxyDistanceFunction.inner
          Distance query
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction that return DistanceQuery
 DistanceQuery<O,D> ProxyDistanceFunction.getDistanceQuery()
          Get the inner query
<O extends DBID>
DistanceQuery<O,D>
AbstractDBIDDistanceFunction.instantiate(Relation<O> database)
           
<T extends O>
DistanceQuery<T,D>
DistanceFunction.instantiate(Relation<T> relation)
          Instantiate with a database to get the actual distance query.
<T extends O>
DistanceQuery<T,D>
MinKDistance.instantiate(Relation<T> relation)
           
<T extends O>
DistanceQuery<T,D>
AbstractPrimitiveDistanceFunction.instantiate(Relation<T> relation)
          Instantiate with a database to get the actual distance query.
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction with parameters of type DistanceQuery
static
<O,D extends Distance<D>>
ProxyDistanceFunction<O,D>
ProxyDistanceFunction.proxy(DistanceQuery<O,D> inner)
          Static method version.
 void ProxyDistanceFunction.setDistanceQuery(DistanceQuery<O,D> inner)
           
 

Constructors in de.lmu.ifi.dbs.elki.distance.distancefunction with parameters of type DistanceQuery
ProxyDistanceFunction(DistanceQuery<O,D> inner)
          Constructor
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter that implement DistanceQuery
static class AbstractSimilarityAdapter.Instance<O>
          Inner proxy class for SNN distance function.
static class SimilarityAdapterArccos.Instance<O>
          Distance function instance
static class SimilarityAdapterLinear.Instance<O>
          Distance function instance
static class SimilarityAdapterLn.Instance<O>
          Distance function instance
 

Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.adapter that return DistanceQuery
abstract
<T extends O>
DistanceQuery<T,DoubleDistance>
AbstractSimilarityAdapter.instantiate(Relation<T> database)
           
<T extends O>
DistanceQuery<T,DoubleDistance>
SimilarityAdapterLn.instantiate(Relation<T> database)
           
<T extends O>
DistanceQuery<T,DoubleDistance>
SimilarityAdapterLinear.instantiate(Relation<T> database)
           
<T extends O>
DistanceQuery<T,DoubleDistance>
SimilarityAdapterArccos.instantiate(Relation<T> database)
           
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation that implement DistanceQuery
static class ERiCDistanceFunction.Instance<V extends NumberVector<?,?>>
          The actual instance bound to a particular database.
static class PCABasedCorrelationDistanceFunction.Instance<V extends NumberVector<?,?>>
          The actual instance bound to a particular database.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace
 

Classes in de.lmu.ifi.dbs.elki.distance.distancefunction.subspace that implement DistanceQuery
static class AbstractPreferenceVectorBasedCorrelationDistanceFunction.Instance<V extends NumberVector<?,?>,P extends PreferenceVectorIndex<V>>
          Instance to compute the distances on an actual database.
static class DiSHDistanceFunction.Instance<V extends NumberVector<?,?>>
          The actual instance bound to a particular database.
static class HiSCDistanceFunction.Instance<V extends NumberVector<?,?>>
          The actual instance bound to a particular database.
static class SubspaceDistanceFunction.Instance<V extends NumberVector<?,?>>
          The actual instance bound to a particular database.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index
 

Methods in de.lmu.ifi.dbs.elki.index with parameters of type DistanceQuery
<D extends Distance<D>>
KNNQuery<O,D>
KNNIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery, Object... hints)
          Get a KNN query object for the given distance query and k.
<D extends Distance<D>>
RangeQuery<O,D>
RangeIndex.getRangeQuery(DistanceQuery<O,D> distanceQuery, Object... hints)
          Get a range query object for the given distance query and k.
<D extends Distance<D>>
RKNNQuery<O,D>
RKNNIndex.getRKNNQuery(DistanceQuery<O,D> distanceQuery, Object... hints)
          Get a KNN query object for the given distance query and k.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.preprocessed.knn
 

Fields in de.lmu.ifi.dbs.elki.index.preprocessed.knn declared as DistanceQuery
protected  DistanceQuery<O,D> AbstractMaterializeKNNPreprocessor.distanceQuery
          The distance query we used.
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed.knn that return DistanceQuery
 DistanceQuery<O,D> AbstractMaterializeKNNPreprocessor.getDistanceQuery()
          The distance query we used.
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed.knn with parameters of type DistanceQuery
<S extends Distance<S>>
KNNQuery<O,S>
AbstractMaterializeKNNPreprocessor.getKNNQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
<S extends Distance<S>>
RKNNQuery<O,S>
MaterializeKNNAndRKNNPreprocessor.getRKNNQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical that return DistanceQuery
abstract  DistanceQuery<O,D> MetricalIndexTree.getDistanceQuery()
          Returns the distance function of this metrical index.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants
 

Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants declared as DistanceQuery
protected  DistanceQuery<O,D> AbstractMTree.distanceQuery
          The distance query
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants that return DistanceQuery
 DistanceQuery<O,D> AbstractMTree.getDistanceQuery()
           
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants with parameters of type DistanceQuery
AbstractMTree(PageFile<N> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction)
          Constructor.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees with parameters of type DistanceQuery
AbstractMkTree(PageFile<N> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction)
          Constructor.
AbstractMkTreeUnified(PageFile<N> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type DistanceQuery
<S extends Distance<S>>
KNNQuery<O,S>
MkAppTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
<S extends Distance<S>>
RangeQuery<O,S>
MkAppTreeIndex.getRangeQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
<S extends Distance<S>>
RKNNQuery<O,S>
MkAppTreeIndex.getRKNNQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp with parameters of type DistanceQuery
MkAppTree(PageFile<MkAppTreeNode<O,D>> pageFile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max, int p, boolean log)
          Constructor.
MkAppTreeIndex(Relation<O> relation, PageFile<MkAppTreeNode<O,D>> pageFile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max, int p, boolean log)
          Constructor.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type DistanceQuery
<O> D
MkCoPDirectoryEntry.approximateConservativeKnnDistance(int k, DistanceQuery<O,D> distanceFunction)
          Returns the conservative approximated knn distance of the entry.
<O> D
MkCoPEntry.approximateConservativeKnnDistance(int k, DistanceQuery<O,D> distanceFunction)
          Returns the conservative approximated knn distance of the entry.
<O> D
MkCoPLeafEntry.approximateConservativeKnnDistance(int k, DistanceQuery<O,D> distanceFunction)
          Returns the conservative approximated knn distance of the entry.
<O> D
MkCoPLeafEntry.approximateProgressiveKnnDistance(int k, DistanceQuery<O,D> distanceFunction)
          Returns the progressive approximated knn distance of the entry.
<O,D extends NumberDistance<D,?>>
D
ApproximationLine.getApproximatedKnnDistance(int k, DistanceQuery<O,D> distanceFunction)
          Returns the approximated knn-distance at the specified k.
<S extends Distance<S>>
KNNQuery<O,S>
MkCoPTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
<S extends Distance<S>>
RangeQuery<O,S>
MkCoPTreeIndex.getRangeQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
<S extends Distance<S>>
RKNNQuery<O,S>
MkCoPTreeIndex.getRKNNQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop with parameters of type DistanceQuery
MkCoPTree(PageFile<MkCoPTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
MkCoPTreeIndex(Relation<O> relation, PageFile<MkCoPTreeNode<O,D>> pageFile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax with parameters of type DistanceQuery
<S extends Distance<S>>
KNNQuery<O,S>
MkMaxTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
<S extends Distance<S>>
RangeQuery<O,S>
MkMaxTreeIndex.getRangeQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
<S extends Distance<S>>
RKNNQuery<O,S>
MkMaxTreeIndex.getRKNNQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
protected  D MkMaxTreeNode.kNNDistance(DistanceQuery<O,D> distanceFunction)
          Determines and returns the k-nearest neighbor distance of this node as the maximum of the k-nearest neighbor distances of all entries.
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax with parameters of type DistanceQuery
MkMaxTree(PageFile<MkMaxTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
MkMaxTreeIndex(Relation<O> relation, PageFile<MkMaxTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab with parameters of type DistanceQuery
<S extends Distance<S>>
KNNQuery<O,S>
MkTabTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
<S extends Distance<S>>
RangeQuery<O,S>
MkTabTreeIndex.getRangeQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
<S extends Distance<S>>
RKNNQuery<O,S>
MkTabTreeIndex.getRKNNQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
protected  List<D> MkTabTreeNode.kNNDistances(DistanceQuery<O,D> distanceFunction)
          Determines and returns the knn distance of this node as the maximum knn distance of all entries.
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab with parameters of type DistanceQuery
MkTabTree(PageFile<MkTabTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
MkTabTreeIndex(Relation<O> relation, PageFile<MkTabTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction, int k_max)
          Constructor.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree with parameters of type DistanceQuery
<S extends Distance<S>>
KNNQuery<O,S>
MTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
<S extends Distance<S>>
RangeQuery<O,S>
MTreeIndex.getRangeQuery(DistanceQuery<O,S> distanceQuery, Object... hints)
           
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree with parameters of type DistanceQuery
MTree(PageFile<MTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction)
          Constructor.
MTreeIndex(Relation<O> relation, PageFile<MTreeNode<O,D>> pagefile, DistanceQuery<O,D> distanceQuery, DistanceFunction<O,D> distanceFunction)
          Constructor.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query with parameters of type DistanceQuery
MetricalIndexKNNQuery(AbstractMTree<O,D,?,?> index, DistanceQuery<O,D> distanceQuery)
          Constructor.
MetricalIndexRangeQuery(AbstractMTree<O,D,?,?> index, DistanceQuery<O,D> distanceQuery)
          Constructor.
MkTreeRKNNQuery(AbstractMkTree<O,D,?,?> index, DistanceQuery<O,D> distanceQuery)
          Constructor.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.split
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.split with parameters of type DistanceQuery
(package private)  Assignments<D,E> MTreeSplit.balancedPartition(N node, DBID routingObject1, DBID routingObject2, DistanceQuery<O,D> distanceFunction)
          Creates a balanced partition of the entries of the specified node.
private  void MLBDistSplit.promote(N node, DistanceQuery<O,D> distanceFunction)
          Selects the second object of the specified node to be promoted and stored into the parent node and partitions the entries according to the M_LB_DIST strategy.
private  void MRadSplit.promote(N node, DistanceQuery<O,D> distanceFunction)
          Selects two objects of the specified node to be promoted and stored into the parent node.
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.split with parameters of type DistanceQuery
MLBDistSplit(N node, DistanceQuery<O,D> distanceFunction)
          Creates a new split object.
MRadSplit(N node, DistanceQuery<O,D> distanceFunction)
          Creates a new split object.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu
 

Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu with parameters of type DistanceQuery
<D extends Distance<D>>
KNNQuery<O,D>
DeLiCluTreeIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery, Object... hints)
           
<D extends Distance<D>>
RangeQuery<O,D>
DeLiCluTreeIndex.getRangeQuery(DistanceQuery<O,D> distanceQuery, Object... hints)
           
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query
 

Constructors in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query with parameters of type DistanceQuery
DoubleDistanceRStarTreeKNNQuery(AbstractRStarTree<?,?> tree, DistanceQuery<O,DoubleDistance> distanceQuery, SpatialPrimitiveDoubleDistanceFunction<? super O> distanceFunction)
          Constructor.
DoubleDistanceRStarTreeRangeQuery(AbstractRStarTree<?,?> tree, DistanceQuery<O,DoubleDistance> distanceQuery, SpatialPrimitiveDoubleDistanceFunction<? super O> distanceFunction)
          Constructor.
 

Uses of DistanceQuery in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar
 

Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar with parameters of type DistanceQuery
<D extends Distance<D>>
KNNQuery<O,D>
RStarTreeIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery, Object... hints)
           
<D extends Distance<D>>
RangeQuery<O,D>
RStarTreeIndex.getRangeQuery(DistanceQuery<O,D> distanceQuery, Object... hints)
           
 


Release 0.4.0 (2011-09-20_1324)