Uses of Interface
de.lmu.ifi.dbs.elki.data.model.Model

Packages that use Model
de.lmu.ifi.dbs.elki.algorithm.clustering Clustering algorithms Clustering algorithms are supposed to implement the Algorithm-Interface. 
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation Correlation clustering algorithms 
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. 
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial Trivial clustering algorithms: all in one, no clusters, label clusterings These methods are mostly useful for providing a reference result in evaluation. 
de.lmu.ifi.dbs.elki.data Basic classes for different data types, database object types and label types. 
de.lmu.ifi.dbs.elki.data.model Cluster models classes for various algorithms. 
de.lmu.ifi.dbs.elki.evaluation.paircounting Evaluation of clustering results via pair counting. 
de.lmu.ifi.dbs.elki.result Result types, representation and handling 
de.lmu.ifi.dbs.elki.visualization Visualization package of ELKI. 
de.lmu.ifi.dbs.elki.visualization.opticsplot Code for drawing OPTICS plots 
de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d Visualizers based on 1D projections. 
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d Visualizers based on 2D projections. 
 

Uses of Model in de.lmu.ifi.dbs.elki.algorithm.clustering
 

Classes in de.lmu.ifi.dbs.elki.algorithm.clustering with type parameters of type Model
 class AbstractProjectedClustering<R extends Clustering<Model>,V extends NumberVector<V,?>>
          Abstract superclass for projected clustering algorithms, like PROCLUS and ORCLUS.
 class AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<V,?>>
          Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor.
 interface ClusteringAlgorithm<C extends Clustering<? extends Model>>
          Interface for Algorithms that are capable to provide a Clustering as Result. in general, clustering algorithms are supposed to implement the Algorithm-Interface.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering that return types with arguments of type Model
private  Clustering<Model> SLINK.extractClusters_erich(DBIDs ids, DataStore<DBID> pi, DataStore<D> lambda, int minclusters)
          Extract all clusters from the pi-lambda-representation.
 Clustering<Model> SNNClustering.run(Database database, Relation<O> relation)
          Perform SNN clustering
 Clustering<Model> DBSCAN.run(Database database, Relation<O> relation)
          Performs the DBSCAN algorithm on the given database.
 Clustering<Model> AbstractProjectedDBSCAN.run(Database database, Relation<V> relation)
           
 

Uses of Model in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
 

Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type parameters of type Model
protected  Class<? extends ClusteringAlgorithm<Clustering<Model>>> COPAC.Parameterizer.algC
           
private  Class<? extends ClusteringAlgorithm<Clustering<Model>>> COPAC.partitionAlgorithm
          Get the algorithm to run on each partition.
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation that return types with arguments of type Model
private  Clustering<Model> CASH.doRun(Relation<ParameterizationFunction> relation, FiniteProgress progress)
          Runs the CASH algorithm on the specified database, this method is recursively called until only noise is left.
 ClusteringAlgorithm<Clustering<Model>> COPAC.getPartitionAlgorithm(DistanceQuery<V,D> query)
          Returns the partition algorithm.
 Clustering<Model> CASH.run(Database database, Relation<ParameterizationFunction> relation)
          Run CASH on the relation.
 Clustering<Model> ORCLUS.run(Database database, Relation<V> relation)
          Performs the ORCLUS algorithm on the given database.
 Clustering<Model> COPAC.run(Relation<V> relation)
          Performs the COPAC algorithm on the given database.
private  Clustering<Model> COPAC.runPartitionAlgorithm(Relation<V> relation, Map<Integer,DBIDs> partitionMap, DistanceQuery<V,D> query)
          Runs the partition algorithm and creates the result.
 

Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type arguments of type Model
private  SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> ERiC.extractCorrelationClusters(Clustering<Model> copacResult, Relation<V> database, int dimensionality)
          Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension.
 

Constructor parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type arguments of type Model
COPAC(FilteredLocalPCABasedDistanceFunction<V,?,D> partitionDistanceFunction, Class<? extends ClusteringAlgorithm<Clustering<Model>>> partitionAlgorithm, Collection<Pair<OptionID,Object>> partitionAlgorithmParameters)
          Constructor.
 

Uses of Model in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that return types with arguments of type Model
 Clustering<Model> PROCLUS.run(Database database, Relation<V> relation)
          Performs the PROCLUS algorithm on the given database.
private  List<Cluster<Model>> SUBCLU.runDBSCAN(Relation<V> relation, DBIDs ids, Subspace<V> subspace)
          Runs the DBSCAN algorithm on the specified partition of the database in the given subspace.
 

Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with type arguments of type Model
private  Subspace<V> SUBCLU.bestSubspace(List<Subspace<V>> subspaces, Subspace<V> candidate, TreeMap<Subspace<V>,List<Cluster<Model>>> clusterMap)
          Determines the d-dimensional subspace of the (d+1) -dimensional candidate with minimal number of objects in the cluster.
 

Uses of Model in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial that return types with arguments of type Model
 Clustering<Model> ByLabelClustering.run(Database database)
           
 Clustering<Model> ByLabelHierarchicalClustering.run(Database database)
           
 Clustering<Model> TrivialAllNoise.run(Relation<?> relation)
           
 Clustering<Model> ByLabelClustering.run(Relation<?> relation)
          Run the actual clustering algorithm.
 Clustering<Model> ByLabelHierarchicalClustering.run(Relation<?> relation)
          Run the actual clustering algorithm.
 Clustering<Model> TrivialAllInOne.run(Relation<?> relation)
           
 

Uses of Model in de.lmu.ifi.dbs.elki.data
 

Classes in de.lmu.ifi.dbs.elki.data with type parameters of type Model
 class Cluster<M extends Model>
          Generic cluster class, that may or not have hierarchical information.
 class Clustering<M extends Model>
          Result class for clusterings.
 

Fields in de.lmu.ifi.dbs.elki.data declared as Model
private  M Cluster.model
          Cluster model.
 

Uses of Model in de.lmu.ifi.dbs.elki.data.model
 

Classes in de.lmu.ifi.dbs.elki.data.model that implement Model
 class BaseModel
          Abstract base class for Cluster Models.
 class Bicluster<V extends FeatureVector<?,?>>
          Wrapper class to provide the basic properties of a bicluster.
 class BiclusterWithInverted<V extends FeatureVector<V,?>>
          This code was factored out of the Bicluster class, since not all biclusters have inverted rows.
 class ClusterModel
          Generic cluster model.
 class CorrelationAnalysisSolution<V extends NumberVector<V,?>>
          A solution of correlation analysis is a matrix of equations describing the dependencies.
 class CorrelationModel<V extends FeatureVector<V,?>>
          Cluster model using a filtered PCA result and an centroid.
 class DendrogramModel<D extends Distance<D>>
          Model for dendrograms, provides the distance to the child cluster.
 class DimensionModel
          Cluster model just providing a cluster dimensionality.
 class EMModel<V extends FeatureVector<V,?>>
          Cluster model of an EM cluster, providing a mean and a full covariance Matrix.
 class LinearEquationModel
          Cluster model containing a linear equation system for the cluster.
 class MeanModel<V extends FeatureVector<V,?>>
          Cluster model that stores a mean for the cluster.
 class OPTICSModel
          Model for an OPTICS cluster
 class SubspaceModel<V extends FeatureVector<V,?>>
          Model for Subspace Clusters.
 

Uses of Model in de.lmu.ifi.dbs.elki.evaluation.paircounting
 

Methods in de.lmu.ifi.dbs.elki.evaluation.paircounting with type parameters of type Model
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2, boolean noiseSpecial, boolean hierarchicalSpecial)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2, boolean noiseSpecial, boolean hierarchicalSpecial)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2, double beta)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2, double beta)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2, double beta, boolean noiseSpecial, boolean hierarchicalSpecial)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
double
PairCountingFMeasure.compareClusterings(R result1, S result2, double beta, boolean noiseSpecial, boolean hierarchicalSpecial)
          Compare two clustering results.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
Triple<Integer,Integer,Integer>
PairCountingFMeasure.countPairs(R result1, S result2)
          Compare two sets of generated pairs.
static
<R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model>
Triple<Integer,Integer,Integer>
PairCountingFMeasure.countPairs(R result1, S result2)
          Compare two sets of generated pairs.
static
<R extends Clustering<M>,M extends Model>
PairSortedGeneratorInterface
PairCountingFMeasure.getPairGenerator(R clusters, boolean noiseSpecial, boolean hierarchicalSpecial)
          Get a pair generator for the given Clustering
 

Uses of Model in de.lmu.ifi.dbs.elki.result
 

Methods in de.lmu.ifi.dbs.elki.result that return types with arguments of type Model
static List<Clustering<? extends Model>> ResultUtil.getClusteringResults(Result r)
          Collect all clustering results from a Result
 

Uses of Model in de.lmu.ifi.dbs.elki.visualization
 

Methods in de.lmu.ifi.dbs.elki.visualization that return types with arguments of type Model
private  Clustering<Model> VisualizerContext.generateDefaultClustering()
          Generate a default (fallback) clustering.
 Clustering<Model> VisualizerContext.getOrCreateDefaultClustering()
          Convenience method to get the clustering to use, and fall back to a default "clustering".
 

Uses of Model in de.lmu.ifi.dbs.elki.visualization.opticsplot
 

Methods in de.lmu.ifi.dbs.elki.visualization.opticsplot that return types with arguments of type Model
static
<D extends Distance<D>>
Clustering<Model>
OPTICSCut.makeOPTICSCut(ClusterOrderResult<D> co, OPTICSDistanceAdapter<D> adapter, double epsilon)
          Compute an OPTICS cut clustering
 

Uses of Model in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d
 

Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d with type parameters of type Model
private  Clustering<Model> P1DHistogramVisualizer.clustering
          The clustering we visualize
 

Uses of Model in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d
 

Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d with type parameters of type Model
private  Clustering<Model> ClusteringVisualization.clustering
          The result we visualize
(package private)  Clustering<Model> ClusterConvexHullVisualization.clustering
          The result we work on
 

Method parameters in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d with type arguments of type Model
private  void BubbleVisualization.setupCSS(SVGPlot svgp, Clustering<? extends Model> clustering)
          Registers the Bubble-CSS-Class at a SVGPlot.
 


Release 0.4.0 (2011-09-20_1324)