|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Model | |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms
Clustering algorithms are supposed to implement the Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms |
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. |
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial | Trivial clustering algorithms: all in one, no clusters, label clusterings These methods are mostly useful for providing a reference result in evaluation. |
de.lmu.ifi.dbs.elki.data | Basic classes for different data types, database object types and label types. |
de.lmu.ifi.dbs.elki.data.model | Cluster models classes for various algorithms. |
de.lmu.ifi.dbs.elki.evaluation.paircounting | Evaluation of clustering results via pair counting. |
de.lmu.ifi.dbs.elki.result | Result types, representation and handling |
de.lmu.ifi.dbs.elki.visualization | Visualization package of ELKI. |
de.lmu.ifi.dbs.elki.visualization.opticsplot | Code for drawing OPTICS plots |
de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d | Visualizers based on 1D projections. |
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d | Visualizers based on 2D projections. |
Uses of Model in de.lmu.ifi.dbs.elki.algorithm.clustering |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.clustering with type parameters of type Model | |
---|---|
class |
AbstractProjectedClustering<R extends Clustering<Model>,V extends NumberVector<V,?>>
Abstract superclass for projected clustering algorithms, like PROCLUS
and ORCLUS . |
class |
AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<V,?>>
Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor. |
interface |
ClusteringAlgorithm<C extends Clustering<? extends Model>>
Interface for Algorithms that are capable to provide a Clustering as Result. in general, clustering algorithms are supposed to
implement the Algorithm -Interface. |
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering that return types with arguments of type Model | |
---|---|
private Clustering<Model> |
SLINK.extractClusters_erich(DBIDs ids,
DataStore<DBID> pi,
DataStore<D> lambda,
int minclusters)
Extract all clusters from the pi-lambda-representation. |
Clustering<Model> |
SNNClustering.run(Database database,
Relation<O> relation)
Perform SNN clustering |
Clustering<Model> |
DBSCAN.run(Database database,
Relation<O> relation)
Performs the DBSCAN algorithm on the given database. |
Clustering<Model> |
AbstractProjectedDBSCAN.run(Database database,
Relation<V> relation)
|
Uses of Model in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
---|
Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type parameters of type Model | |
---|---|
protected Class<? extends ClusteringAlgorithm<Clustering<Model>>> |
COPAC.Parameterizer.algC
|
private Class<? extends ClusteringAlgorithm<Clustering<Model>>> |
COPAC.partitionAlgorithm
Get the algorithm to run on each partition. |
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation that return types with arguments of type Model | |
---|---|
private Clustering<Model> |
CASH.doRun(Relation<ParameterizationFunction> relation,
FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is recursively called until only noise is left. |
ClusteringAlgorithm<Clustering<Model>> |
COPAC.getPartitionAlgorithm(DistanceQuery<V,D> query)
Returns the partition algorithm. |
Clustering<Model> |
CASH.run(Database database,
Relation<ParameterizationFunction> relation)
Run CASH on the relation. |
Clustering<Model> |
ORCLUS.run(Database database,
Relation<V> relation)
Performs the ORCLUS algorithm on the given database. |
Clustering<Model> |
COPAC.run(Relation<V> relation)
Performs the COPAC algorithm on the given database. |
private Clustering<Model> |
COPAC.runPartitionAlgorithm(Relation<V> relation,
Map<Integer,DBIDs> partitionMap,
DistanceQuery<V,D> query)
Runs the partition algorithm and creates the result. |
Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type arguments of type Model | |
---|---|
private SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> |
ERiC.extractCorrelationClusters(Clustering<Model> copacResult,
Relation<V> database,
int dimensionality)
Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension. |
Constructor parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type arguments of type Model | |
---|---|
COPAC(FilteredLocalPCABasedDistanceFunction<V,?,D> partitionDistanceFunction,
Class<? extends ClusteringAlgorithm<Clustering<Model>>> partitionAlgorithm,
Collection<Pair<OptionID,Object>> partitionAlgorithmParameters)
Constructor. |
Uses of Model in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that return types with arguments of type Model | |
---|---|
Clustering<Model> |
PROCLUS.run(Database database,
Relation<V> relation)
Performs the PROCLUS algorithm on the given database. |
private List<Cluster<Model>> |
SUBCLU.runDBSCAN(Relation<V> relation,
DBIDs ids,
Subspace<V> subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the given subspace. |
Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with type arguments of type Model | |
---|---|
private Subspace<V> |
SUBCLU.bestSubspace(List<Subspace<V>> subspaces,
Subspace<V> candidate,
TreeMap<Subspace<V>,List<Cluster<Model>>> clusterMap)
Determines the d -dimensional subspace of the (d+1)
-dimensional candidate with minimal number of objects in the cluster. |
Uses of Model in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.trivial that return types with arguments of type Model | |
---|---|
Clustering<Model> |
ByLabelClustering.run(Database database)
|
Clustering<Model> |
ByLabelHierarchicalClustering.run(Database database)
|
Clustering<Model> |
TrivialAllNoise.run(Relation<?> relation)
|
Clustering<Model> |
ByLabelClustering.run(Relation<?> relation)
Run the actual clustering algorithm. |
Clustering<Model> |
ByLabelHierarchicalClustering.run(Relation<?> relation)
Run the actual clustering algorithm. |
Clustering<Model> |
TrivialAllInOne.run(Relation<?> relation)
|
Uses of Model in de.lmu.ifi.dbs.elki.data |
---|
Classes in de.lmu.ifi.dbs.elki.data with type parameters of type Model | |
---|---|
class |
Cluster<M extends Model>
Generic cluster class, that may or not have hierarchical information. |
class |
Clustering<M extends Model>
Result class for clusterings. |
Fields in de.lmu.ifi.dbs.elki.data declared as Model | |
---|---|
private M |
Cluster.model
Cluster model. |
Uses of Model in de.lmu.ifi.dbs.elki.data.model |
---|
Classes in de.lmu.ifi.dbs.elki.data.model that implement Model | |
---|---|
class |
BaseModel
Abstract base class for Cluster Models. |
class |
Bicluster<V extends FeatureVector<?,?>>
Wrapper class to provide the basic properties of a bicluster. |
class |
BiclusterWithInverted<V extends FeatureVector<V,?>>
This code was factored out of the Bicluster class, since not all biclusters have inverted rows. |
class |
ClusterModel
Generic cluster model. |
class |
CorrelationAnalysisSolution<V extends NumberVector<V,?>>
A solution of correlation analysis is a matrix of equations describing the dependencies. |
class |
CorrelationModel<V extends FeatureVector<V,?>>
Cluster model using a filtered PCA result and an centroid. |
class |
DendrogramModel<D extends Distance<D>>
Model for dendrograms, provides the distance to the child cluster. |
class |
DimensionModel
Cluster model just providing a cluster dimensionality. |
class |
EMModel<V extends FeatureVector<V,?>>
Cluster model of an EM cluster, providing a mean and a full covariance Matrix. |
class |
LinearEquationModel
Cluster model containing a linear equation system for the cluster. |
class |
MeanModel<V extends FeatureVector<V,?>>
Cluster model that stores a mean for the cluster. |
class |
OPTICSModel
Model for an OPTICS cluster |
class |
SubspaceModel<V extends FeatureVector<V,?>>
Model for Subspace Clusters. |
Uses of Model in de.lmu.ifi.dbs.elki.evaluation.paircounting |
---|
Methods in de.lmu.ifi.dbs.elki.evaluation.paircounting with type parameters of type Model | ||
---|---|---|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2,
boolean noiseSpecial,
boolean hierarchicalSpecial)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2,
boolean noiseSpecial,
boolean hierarchicalSpecial)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2,
double beta)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2,
double beta)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2,
double beta,
boolean noiseSpecial,
boolean hierarchicalSpecial)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.compareClusterings(R result1,
S result2,
double beta,
boolean noiseSpecial,
boolean hierarchicalSpecial)
Compare two clustering results. |
|
static
|
PairCountingFMeasure.countPairs(R result1,
S result2)
Compare two sets of generated pairs. |
|
static
|
PairCountingFMeasure.countPairs(R result1,
S result2)
Compare two sets of generated pairs. |
|
static
|
PairCountingFMeasure.getPairGenerator(R clusters,
boolean noiseSpecial,
boolean hierarchicalSpecial)
Get a pair generator for the given Clustering |
Uses of Model in de.lmu.ifi.dbs.elki.result |
---|
Methods in de.lmu.ifi.dbs.elki.result that return types with arguments of type Model | |
---|---|
static List<Clustering<? extends Model>> |
ResultUtil.getClusteringResults(Result r)
Collect all clustering results from a Result |
Uses of Model in de.lmu.ifi.dbs.elki.visualization |
---|
Methods in de.lmu.ifi.dbs.elki.visualization that return types with arguments of type Model | |
---|---|
private Clustering<Model> |
VisualizerContext.generateDefaultClustering()
Generate a default (fallback) clustering. |
Clustering<Model> |
VisualizerContext.getOrCreateDefaultClustering()
Convenience method to get the clustering to use, and fall back to a default "clustering". |
Uses of Model in de.lmu.ifi.dbs.elki.visualization.opticsplot |
---|
Methods in de.lmu.ifi.dbs.elki.visualization.opticsplot that return types with arguments of type Model | ||
---|---|---|
static
|
OPTICSCut.makeOPTICSCut(ClusterOrderResult<D> co,
OPTICSDistanceAdapter<D> adapter,
double epsilon)
Compute an OPTICS cut clustering |
Uses of Model in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d |
---|
Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d with type parameters of type Model | |
---|---|
private Clustering<Model> |
P1DHistogramVisualizer.clustering
The clustering we visualize |
Uses of Model in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d |
---|
Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d with type parameters of type Model | |
---|---|
private Clustering<Model> |
ClusteringVisualization.clustering
The result we visualize |
(package private) Clustering<Model> |
ClusterConvexHullVisualization.clustering
The result we work on |
Method parameters in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d with type arguments of type Model | |
---|---|
private void |
BubbleVisualization.setupCSS(SVGPlot svgp,
Clustering<? extends Model> clustering)
Registers the Bubble-CSS-Class at a SVGPlot. |
|
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |