| Modifier and Type | Method and Description | 
|---|---|
CorrelationAnalysisSolution<V> | 
DependencyDerivator.generateModel(Relation<V> db,
             DBIDs ids)
Runs the pca on the given set of IDs. 
 | 
CorrelationAnalysisSolution<V> | 
DependencyDerivator.generateModel(Relation<V> db,
             DBIDs ids,
             Vector centroid)
Runs the pca on the given set of IDs and for the given centroid. 
 | 
CollectionResult<MaterializeDistances.DistanceEntry> | 
MaterializeDistances.run(Database database,
   Relation<O> relation)
Iterates over all points in the database. 
 | 
KNNDistancesSampler.KNNDistanceOrderResult | 
KNNDistancesSampler.run(Database database,
   Relation<O> relation)
Provides an order of the kNN-distances for all objects within the specified
 database. 
 | 
Result | 
DummyAlgorithm.run(Database database,
   Relation<O> relation)
Run the algorithm. 
 | 
CorrelationAnalysisSolution<V> | 
DependencyDerivator.run(Database database,
   Relation<V> relation)
Computes quantitatively linear dependencies among the attributes of the
 given database based on a linear correlation PCA. 
 | 
WritableDataStore<KNNList> | 
KNNJoin.run(Relation<V> relation)
Joins in the given spatial database to each object its k-nearest neighbors. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Result | 
ValidateApproximativeKNNIndex.run(Database database,
   Relation<O> relation)
Run the algorithm. 
 | 
Result | 
RangeQueryBenchmarkAlgorithm.run(Database database,
   Relation<O> relation)
Run the algorithm, with a separate query set. 
 | 
Result | 
KNNBenchmarkAlgorithm.run(Database database,
   Relation<O> relation)
Run the algorithm. 
 | 
Result | 
RangeQueryBenchmarkAlgorithm.run(Database database,
   Relation<O> relation,
   Relation<NumberVector> radrel)
Run the algorithm, with separate radius relation 
 | 
Result | 
RangeQueryBenchmarkAlgorithm.run(Database database,
   Relation<O> relation,
   Relation<NumberVector> radrel)
Run the algorithm, with separate radius relation 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Relation<? extends ClassLabel> | 
KNNClassifier.labelrep
Class label representation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
PriorProbabilityClassifier.buildClassifier(Database database,
               Relation<? extends ClassLabel> labelrep)
Learns the prior probability for all classes. 
 | 
void | 
KNNClassifier.buildClassifier(Database database,
               Relation<? extends ClassLabel> labels)  | 
void | 
Classifier.buildClassifier(Database database,
               Relation<? extends ClassLabel> classLabels)
Performs the training. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
GriDBSCAN.Instance.buildGrid(Relation<V> relation,
         int numcells,
         double[] offset)
Build the data grid. 
 | 
protected void | 
DBSCAN.expandCluster(Relation<O> relation,
             RangeQuery<O> rangeQuery,
             DBIDRef startObjectID,
             ArrayModifiableDBIDs seeds,
             FiniteProgress objprog,
             IndefiniteProgress clusprog)
DBSCAN-function expandCluster. 
 | 
Clustering<Model> | 
SNNClustering.run(Database database,
   Relation<O> relation)
Perform SNN clustering 
 | 
Clustering<PrototypeModel<O>> | 
CanopyPreClustering.run(Database database,
   Relation<O> relation)
Run the algorithm 
 | 
Clustering<MeanModel> | 
NaiveMeanShiftClustering.run(Database database,
   Relation<V> relation)
Run the mean-shift clustering algorithm. 
 | 
Clustering<Model> | 
DBSCAN.run(Relation<O> relation)
Performs the DBSCAN algorithm on the given database. 
 | 
Clustering<Model> | 
GriDBSCAN.run(Relation<V> relation)
Performs the DBSCAN algorithm on the given database. 
 | 
Clustering<Model> | 
GriDBSCAN.Instance.run(Relation<V> relation)
Performs the DBSCAN algorithm on the given database. 
 | 
protected void | 
DBSCAN.runDBSCAN(Relation<O> relation,
         RangeQuery<O> rangeQuery)
Run the DBSCAN algorithm 
 | 
| Modifier and Type | Method and Description | 
|---|---|
double[][] | 
SimilarityBasedInitializationWithMedian.getSimilarityMatrix(Database db,
                   Relation<O> relation,
                   ArrayDBIDs ids)  | 
double[][] | 
DistanceBasedInitializationWithMedian.getSimilarityMatrix(Database db,
                   Relation<O> relation,
                   ArrayDBIDs ids)  | 
double[][] | 
AffinityPropagationInitialization.getSimilarityMatrix(Database db,
                   Relation<O> relation,
                   ArrayDBIDs ids)
Compute the initial similarity matrix. 
 | 
Clustering<MedoidModel> | 
AffinityPropagationClusteringAlgorithm.run(Database db,
   Relation<O> relation)
Perform affinity propagation clustering. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Relation<V> | 
AbstractBiclustering.relation
Relation we use. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Relation<V> | 
AbstractBiclustering.getRelation()
Getter for the relation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Clustering<M> | 
AbstractBiclustering.run(Relation<V> relation)
Prepares the algorithm for running on a specific database. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<ParameterizationFunction> | 
CASH.fulldatabase
The entire relation. 
 | 
private Relation<V> | 
HiCO.Instance.relation
Data relation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private Relation<ParameterizationFunction> | 
CASH.preprocess(Database db,
          Relation<V> vrel)
Preprocess the dataset, precomputing the parameterization functions. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
ORCLUS.assign(Relation<V> database,
      DistanceQuery<V> distFunc,
      List<ORCLUS.ORCLUSCluster> clusters)
Creates a partitioning of the database by assigning each object to its
 closest seed. 
 | 
private MaterializedRelation<ParameterizationFunction> | 
CASH.buildDB(int dim,
       Matrix basis,
       DBIDs ids,
       Relation<ParameterizationFunction> relation)
Builds a dim-1 dimensional database where the objects are projected into
 the specified subspace. 
 | 
private Database | 
CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation,
                CASHInterval interval)
Builds a database for the derivator consisting of the ids in the specified
 interval. 
 | 
private Database | 
CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation,
                DBIDs ids)
Builds a database for the derivator consisting of the ids in the specified
 interval. 
 | 
private double[] | 
CASH.determineMinMaxDistance(Relation<ParameterizationFunction> relation,
                       int dimensionality)
Determines the minimum and maximum function value of all parameterization
 functions stored in the specified database. 
 | 
private static int | 
CASH.dimensionality(Relation<ParameterizationFunction> relation)
Get the dimensionality of a vector field. 
 | 
private Clustering<Model> | 
CASH.doRun(Relation<ParameterizationFunction> relation,
     FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is
 recursively called until only noise is left. 
 | 
private List<List<Cluster<CorrelationModel<V>>>> | 
ERiC.extractCorrelationClusters(Clustering<Model> dbscanResult,
                          Relation<V> database,
                          int dimensionality,
                          ERiCNeighborPredicate.Instance npred)
Extracts the correlation clusters and noise from the copac result and
 returns a mapping of correlation dimension to maps of clusters within this
 correlation dimension. 
 | 
private Matrix | 
ORCLUS.findBasis(Relation<V> database,
         DistanceQuery<V> distFunc,
         ORCLUS.ORCLUSCluster cluster,
         int dim)
Finds the basis of the subspace of dimensionality  
dim for the
 specified cluster. | 
private LMCLUS.Separation | 
LMCLUS.findSeparation(Relation<NumberVector> relation,
              DBIDs currentids,
              int dimension,
              Random r)
This method samples a number of linear manifolds an tries to determine
 which the one with the best cluster is. 
 | 
private void | 
CASH.initHeap(ObjectHeap<IntegerPriorityObject<CASHInterval>> heap,
        Relation<ParameterizationFunction> relation,
        int dim,
        DBIDs ids)
Initializes the heap with the root intervals. 
 | 
private List<ORCLUS.ORCLUSCluster> | 
ORCLUS.initialSeeds(Relation<V> database,
            int k)
Initializes the list of seeds wit a random sample of size k. 
 | 
private void | 
ORCLUS.merge(Relation<V> database,
     DistanceQuery<V> distFunc,
     List<ORCLUS.ORCLUSCluster> clusters,
     int k_new,
     int d_new,
     IndefiniteProgress cprogress)
Reduces the number of seeds to k_new 
 | 
private Relation<ParameterizationFunction> | 
CASH.preprocess(Database db,
          Relation<V> vrel)
Preprocess the dataset, precomputing the parameterization functions. 
 | 
private ORCLUS.ProjectedEnergy | 
ORCLUS.projectedEnergy(Relation<V> database,
               DistanceQuery<V> distFunc,
               ORCLUS.ORCLUSCluster c_i,
               ORCLUS.ORCLUSCluster c_j,
               int i,
               int j,
               int dim)
Computes the projected energy of the specified clusters. 
 | 
Clustering<Model> | 
LMCLUS.run(Database database,
   Relation<NumberVector> relation)
The main LMCLUS (Linear manifold clustering algorithm) is processed in this
 method. 
 | 
Clustering<Model> | 
ORCLUS.run(Database database,
   Relation<V> relation)
Performs the ORCLUS algorithm on the given database. 
 | 
CorrelationClusterOrder | 
HiCO.run(Database db,
   Relation<V> relation)  | 
Clustering<CorrelationModel<V>> | 
ERiC.run(Database database,
   Relation<V> relation)
Performs the ERiC algorithm on the given database. 
 | 
Clustering<DimensionModel> | 
COPAC.run(Database database,
   Relation<V> relation)
Run the COPAC algorithm. 
 | 
Clustering<Model> | 
CASH.run(Database database,
   Relation<V> vrel)
Run CASH on the relation. 
 | 
private Matrix | 
CASH.runDerivator(Relation<ParameterizationFunction> relation,
            int dim,
            CASHInterval interval,
            ModifiableDBIDs ids)
Runs the derivator on the specified interval and assigns all points having
 a distance less then the standard deviation of the derivator model to the
 model to this model. 
 | 
private LinearEquationSystem | 
CASH.runDerivator(Relation<ParameterizationFunction> relation,
            int dimensionality,
            DBIDs ids)
Runs the derivator on the specified interval and assigns all points having
 a distance less then the standard deviation of the derivator model to the
 model to this model. 
 | 
private ORCLUS.ORCLUSCluster | 
ORCLUS.union(Relation<V> relation,
     DistanceQuery<V> distFunc,
     ORCLUS.ORCLUSCluster c1,
     ORCLUS.ORCLUSCluster c2,
     int dim)
Returns the union of the two specified clusters. 
 | 
| Constructor and Description | 
|---|
HiCO.Instance(Database db,
             Relation<V> relation)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<ParameterizationFunction> | 
CASHIntervalSplit.database
The database storing the parameterization functions. 
 | 
| Constructor and Description | 
|---|
CASHIntervalSplit(Relation<ParameterizationFunction> database,
                 int minPts)
Initializes the logger and sets the debug status to the given value. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static double | 
EM.assignProbabilitiesToInstances(Relation<? extends NumberVector> relation,
                              List<? extends EMClusterModel<?>> models,
                              WritableDataStore<double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and
 compute the expectation value of the current mixture of distributions. 
 | 
List<SphericalGaussianModel> | 
SphericalGaussianModelFactory.buildInitialModels(Database database,
                  Relation<V> relation,
                  int k,
                  NumberVectorDistanceFunction<? super V> df)  | 
List<MultivariateGaussianModel> | 
MultivariateGaussianModelFactory.buildInitialModels(Database database,
                  Relation<V> relation,
                  int k,
                  NumberVectorDistanceFunction<? super V> df)  | 
List<? extends EMClusterModel<M>> | 
EMClusterModelFactory.buildInitialModels(Database database,
                  Relation<V> relation,
                  int k,
                  NumberVectorDistanceFunction<? super V> df)
Build the initial models 
 | 
List<DiagonalGaussianModel> | 
DiagonalGaussianModelFactory.buildInitialModels(Database database,
                  Relation<V> relation,
                  int k,
                  NumberVectorDistanceFunction<? super V> df)  | 
static void | 
EM.recomputeCovarianceMatrices(Relation<? extends NumberVector> relation,
                           WritableDataStore<double[]> probClusterIGivenX,
                           List<? extends EMClusterModel<?>> models)
Recompute the covariance matrixes. 
 | 
Clustering<M> | 
EM.run(Database database,
   Relation<V> relation)
Performs the EM clustering algorithm on the given database. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<? extends NumberVector> | 
ERiCNeighborPredicate.Instance.relation
Vector data relation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected abstract M | 
AbstractRangeQueryNeighborPredicate.computeLocalModel(DBIDRef id,
                 DoubleDBIDList neighbors,
                 Relation<O> relation)
Method to compute the actual data model. 
 | 
protected PreDeConNeighborPredicate.PreDeConModel | 
PreDeConNeighborPredicate.computeLocalModel(DBIDRef id,
                 DoubleDBIDList neighbors,
                 Relation<V> relation)  | 
protected PreDeConNeighborPredicate.PreDeConModel | 
FourCNeighborPredicate.computeLocalModel(DBIDRef id,
                 DoubleDBIDList neighbors,
                 Relation<V> relation)  | 
protected COPACNeighborPredicate.COPACModel | 
COPACNeighborPredicate.computeLocalModel(DBIDRef id,
                 DoubleDBIDList knnneighbors,
                 Relation<V> relation)
COPAC model computation 
 | 
ERiCNeighborPredicate.Instance | 
ERiCNeighborPredicate.instantiate(Database database,
           Relation<V> relation)
Full instantiation interface. 
 | 
COPACNeighborPredicate.Instance | 
COPACNeighborPredicate.instantiate(Database database,
           Relation<V> relation)
Full instantiation method. 
 | 
DataStore<M> | 
AbstractRangeQueryNeighborPredicate.preprocess(Class<? super M> modelcls,
          Relation<O> relation,
          RangeQuery<O> query)
Perform the preprocessing step. 
 | 
Clustering<Model> | 
LSDBC.run(Database database,
   Relation<O> relation)
Run the LSDBC algorithm 
 | 
| Constructor and Description | 
|---|
ERiCNeighborPredicate.Instance(DBIDs ids,
                              DataStore<PCAFilteredResult> storage,
                              Relation<? extends NumberVector> relation)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
PointerDensityHierarchyRepresentationResult | 
SLINKHDBSCANLinearMemory.run(Database db,
   Relation<O> relation)
Run the algorithm 
 | 
PointerHierarchyRepresentationResult | 
SLINK.run(Database database,
   Relation<O> relation)
Performs the SLINK algorithm on the given database. 
 | 
PointerDensityHierarchyRepresentationResult | 
HDBSCANLinearMemory.run(Database db,
   Relation<O> relation)
Run the algorithm 
 | 
PointerHierarchyRepresentationResult | 
AnderbergHierarchicalClustering.run(Database db,
   Relation<O> relation)
Run the algorithm 
 | 
PointerHierarchyRepresentationResult | 
AGNES.run(Database db,
   Relation<O> relation)
Run the algorithm 
 | 
private void | 
SLINK.step2primitive(DBIDRef id,
              DBIDArrayIter it,
              int n,
              Relation<? extends O> relation,
              PrimitiveDistanceFunction<? super O> distFunc,
              WritableDoubleDataStore m)
Second step: Determine the pairwise distances from all objects in the
 pointer representation to the new object with the specified id. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected boolean | 
AbstractKMeans.assignToNearestCluster(Relation<? extends V> relation,
                      List<? extends NumberVector> means,
                      List<? extends ModifiableDBIDs> clusters,
                      WritableIntegerDataStore assignment,
                      double[] varsum)
Returns a list of clusters. 
 | 
protected boolean | 
KMeansBatchedLloyd.assignToNearestCluster(Relation<V> relation,
                      DBIDs ids,
                      List<? extends NumberVector> oldmeans,
                      double[][] meanshift,
                      int[] changesize,
                      List<? extends ModifiableDBIDs> clusters,
                      WritableIntegerDataStore assignment,
                      double[] varsum)
Returns a list of clusters. 
 | 
private boolean | 
KMeansSort.assignToNearestCluster(Relation<V> relation,
                      List<Vector> means,
                      List<ModifiableDBIDs> clusters,
                      WritableIntegerDataStore assignment,
                      double[] varsum,
                      double[][] cdist,
                      int[][] cnum,
                      LongStatistic diststat)
Reassign objects, but only if their bounds indicate it is necessary to do
 so. 
 | 
private boolean | 
KMeansCompare.assignToNearestCluster(Relation<V> relation,
                      List<Vector> means,
                      List<ModifiableDBIDs> clusters,
                      WritableIntegerDataStore assignment,
                      double[] varsum,
                      double[][] cdist,
                      LongStatistic diststat)
Reassign objects, but only if their bounds indicate it is necessary to do
 so. 
 | 
private int | 
KMeansElkan.assignToNearestCluster(Relation<V> relation,
                      List<Vector> means,
                      List<Vector> sums,
                      List<ModifiableDBIDs> clusters,
                      WritableIntegerDataStore assignment,
                      double[] sep,
                      double[][] cdist,
                      WritableDoubleDataStore upper,
                      WritableDataStore<double[]> lower)
Reassign objects, but only if their bounds indicate it is necessary to do
 so. 
 | 
private int | 
KMeansHamerly.assignToNearestCluster(Relation<V> relation,
                      List<Vector> means,
                      List<Vector> sums,
                      List<ModifiableDBIDs> clusters,
                      WritableIntegerDataStore assignment,
                      double[] sep,
                      WritableDoubleDataStore upper,
                      WritableDoubleDataStore lower)
Reassign objects, but only if their bounds indicate it is necessary to do
 so. 
 | 
private int | 
KMeansElkan.initialAssignToNearestCluster(Relation<V> relation,
                             List<Vector> means,
                             List<Vector> sums,
                             List<ModifiableDBIDs> clusters,
                             WritableIntegerDataStore assignment,
                             WritableDoubleDataStore upper,
                             WritableDataStore<double[]> lower)
Reassign objects, but only if their bounds indicate it is necessary to do
 so. 
 | 
private int | 
KMeansHamerly.initialAssignToNearestCluster(Relation<V> relation,
                             List<Vector> means,
                             List<Vector> sums,
                             List<ModifiableDBIDs> clusters,
                             WritableIntegerDataStore assignment,
                             WritableDoubleDataStore upper,
                             WritableDoubleDataStore lower)
Reassign objects, but only if their bounds indicate it is necessary to do
 so. 
 | 
protected boolean | 
AbstractKMeans.macQueenIterate(Relation<V> relation,
               List<Vector> means,
               List<ModifiableDBIDs> clusters,
               WritableIntegerDataStore assignment,
               double[] varsum)
Perform a MacQueen style iteration. 
 | 
protected List<Vector> | 
AbstractKMeans.means(List<? extends DBIDs> clusters,
     List<? extends NumberVector> means,
     Relation<V> database)
Returns the mean vectors of the given clusters in the given database. 
 | 
protected List<Vector> | 
AbstractKMeans.medians(List<? extends DBIDs> clusters,
       List<Vector> medians,
       Relation<V> database)
Returns the median vectors of the given clusters in the given database. 
 | 
Clustering<M> | 
XMeans.run(Database database,
   Relation<V> relation)
Run the algorithm on a database and relation. 
 | 
Clustering<KMeansModel> | 
SingleAssignmentKMeans.run(Database database,
   Relation<V> relation)  | 
Clustering<MedoidModel> | 
KMedoidsPAM.run(Database database,
   Relation<V> relation)
Run k-medoids 
 | 
Clustering<MedoidModel> | 
KMedoidsEM.run(Database database,
   Relation<V> relation)
Run k-medoids 
 | 
Clustering<MeanModel> | 
KMediansLloyd.run(Database database,
   Relation<V> relation)  | 
Clustering<KMeansModel> | 
KMeansSort.run(Database database,
   Relation<V> relation)  | 
Clustering<KMeansModel> | 
KMeansMacQueen.run(Database database,
   Relation<V> relation)  | 
Clustering<KMeansModel> | 
KMeansLloyd.run(Database database,
   Relation<V> relation)  | 
Clustering<KMeansModel> | 
KMeansHybridLloydMacQueen.run(Database database,
   Relation<V> relation)  | 
Clustering<KMeansModel> | 
KMeansHamerly.run(Database database,
   Relation<V> relation)  | 
Clustering<KMeansModel> | 
KMeansElkan.run(Database database,
   Relation<V> relation)  | 
Clustering<KMeansModel> | 
KMeansCompare.run(Database database,
   Relation<V> relation)  | 
Clustering<M> | 
KMeansBisecting.run(Database database,
   Relation<V> relation)  | 
Clustering<KMeansModel> | 
KMeansBatchedLloyd.run(Database database,
   Relation<V> relation)  | 
Clustering<M> | 
KMeans.run(Database database,
   Relation<V> rel)
Run the clustering algorithm. 
 | 
Clustering<MedoidModel> | 
CLARA.run(Database database,
   Relation<V> relation)  | 
Clustering<M> | 
BestOfMultipleKMeans.run(Database database,
   Relation<V> relation)  | 
protected List<? extends NumberVector> | 
XMeans.splitCentroid(Cluster<? extends MeanModel> parentCluster,
             Relation<V> relation)
Split an existing centroid into two initial centers. 
 | 
protected List<Cluster<M>> | 
XMeans.splitCluster(Cluster<M> parentCluster,
            Database database,
            Relation<V> relation)
Conditionally splits the clusters based on the information criterion. 
 | 
private void | 
KMeansElkan.updateBounds(Relation<V> relation,
            WritableIntegerDataStore assignment,
            WritableDoubleDataStore upper,
            WritableDataStore<double[]> lower,
            double[] move)
Update the bounds for k-means. 
 | 
private void | 
KMeansHamerly.updateBounds(Relation<V> relation,
            WritableIntegerDataStore assignment,
            WritableDoubleDataStore upper,
            WritableDoubleDataStore lower,
            double[] move,
            double delta)
Update the bounds for k-means. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<T extends NumberVector,O extends NumberVector>  | 
PredefinedInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<O> factory)  | 
<T extends V,O extends NumberVector>  | 
SampleKMeansInitialization.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<O> factory)  | 
<T extends V,O extends NumberVector>  | 
KMeansInitialization.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<O> factory)
Choose initial means 
 | 
<T extends NumberVector,V extends NumberVector>  | 
RandomlyGeneratedInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<V> factory)  | 
<T extends NumberVector,V extends NumberVector>  | 
RandomlyChosenInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<V> factory)  | 
<T extends NumberVector,V extends NumberVector>  | 
PAMInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<V> factory)  | 
<T extends NumberVector,V extends NumberVector>  | 
KMeansPlusPlusInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<V> factory)  | 
<T extends NumberVector,V extends NumberVector>  | 
FirstKInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<V> factory)  | 
<T extends NumberVector,V extends NumberVector>  | 
FarthestSumPointsInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<V> factory)  | 
<T extends NumberVector,V extends NumberVector>  | 
FarthestPointsInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<V> factory)  | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) Relation<V> | 
KMeansProcessor.relation
Data relation. 
 | 
private Relation<V> | 
KMeansProcessor.Instance.relation
Data relation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Clustering<KMeansModel> | 
ParallelLloydKMeans.run(Database database,
   Relation<V> relation)  | 
| Constructor and Description | 
|---|
KMeansProcessor.Instance(Relation<V> relation,
                        NumberVectorDistanceFunction<? super V> distance,
                        WritableIntegerDataStore assignment,
                        List<? extends NumberVector> means)
Constructor. 
 | 
KMeansProcessor(Relation<V> relation,
               NumberVectorDistanceFunction<? super V> distance,
               WritableIntegerDataStore assignment,
               double[] varsum)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <V extends NumberVector>  | 
AbstractKMeansQualityMeasure.logLikelihood(Relation<V> relation,
             Clustering<? extends MeanModel> clustering,
             NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering. 
 | 
static <V extends NumberVector>  | 
AbstractKMeansQualityMeasure.logLikelihoodAlternate(Relation<V> relation,
                      Clustering<? extends MeanModel> clustering,
                      NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering. 
 | 
static int | 
AbstractKMeansQualityMeasure.numberOfFreeParameters(Relation<? extends NumberVector> relation,
                      Clustering<? extends MeanModel> clustering)
Compute the number of free parameters. 
 | 
<V extends NumberVector>  | 
WithinClusterVarianceQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)  | 
<V extends NumberVector>  | 
WithinClusterMeanDistanceQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)  | 
<V extends NumberVector>  | 
BayesianInformationCriterionZhao.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)  | 
<V extends NumberVector>  | 
BayesianInformationCriterion.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)  | 
<V extends NumberVector>  | 
AkaikeInformationCriterion.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)  | 
<V extends O>  | 
KMeansQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)
Calculates and returns the quality measure. 
 | 
static <V extends NumberVector>  | 
AbstractKMeansQualityMeasure.varianceOfCluster(Cluster<? extends MeanModel> cluster,
                 NumberVectorDistanceFunction<? super V> distanceFunction,
                 Relation<V> relation)
Variance contribution of a single cluster. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
ExternalClustering.attachToRelation(Database database,
                Relation<?> r,
                TIntArrayList assignment,
                ArrayList<String> name)
Build a clustering from the file result. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Clustering<ClusterModel> | 
KNNKernelDensityMinimaClustering.run(Relation<V> relation)
Run the clustering algorithm on a data relation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private Clustering<OPTICSModel> | 
OPTICSXi.extractClusters(ClusterOrder clusterOrderResult,
               Relation<?> relation,
               double ixi,
               int minpts)
Extract clusters from a cluster order result. 
 | 
Clustering<OPTICSModel> | 
OPTICSXi.run(Database database,
   Relation<?> relation)  | 
ClusterOrder | 
DeLiClu.run(Database database,
   Relation<NV> relation)  | 
ClusterOrder | 
OPTICSList.run(Database db,
   Relation<O> relation)  | 
ClusterOrder | 
OPTICSHeap.run(Database db,
   Relation<O> relation)  | 
abstract ClusterOrder | 
GeneralizedOPTICS.run(Database db,
   Relation<O> relation)
Run OPTICS on the database. 
 | 
abstract ClusterOrder | 
AbstractOPTICS.run(Database db,
   Relation<O> relation)
Run OPTICS on the database. 
 | 
ClusterOrder | 
FastOPTICS.run(Database db,
   Relation<V> rel)
Run the algorithm. 
 | 
| Constructor and Description | 
|---|
GeneralizedOPTICS.Instance(Database db,
                          Relation<O> relation)
Constructor for a single data set. 
 | 
OPTICSHeap.Instance(Database db,
                   Relation<O> relation)
Constructor for a single data set. 
 | 
OPTICSList.Instance(Database db,
                   Relation<O> relation)
Constructor for a single data set. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<V> | 
HiSC.Instance.relation
Data relation. 
 | 
private Relation<V> | 
DiSH.Instance.relation
Data relation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private ArrayList<PROCLUS.PROCLUSCluster> | 
PROCLUS.assignPoints(ArrayDBIDs m_current,
            long[][] dimensions,
            Relation<V> database)
Assigns the objects to the clusters. 
 | 
private void | 
P3C.assignUnassigned(Relation<V> relation,
                WritableDataStore<double[]> probClusterIGivenX,
                List<MultivariateGaussianModel> models,
                ModifiableDBIDs unassigned)
Assign unassigned objects to best candidate based on shortest Mahalanobis
 distance. 
 | 
private double | 
PROCLUS.avgDistance(Vector centroid,
           DBIDs objectIDs,
           Relation<V> database,
           int dimension)
Computes the average distance of the objects to the centroid along the
 specified dimension. 
 | 
private void | 
DiSH.buildHierarchy(Relation<V> database,
              Clustering<SubspaceModel> clustering,
              List<Cluster<SubspaceModel>> clusters,
              int dimensionality)
Builds the cluster hierarchy. 
 | 
private void | 
DiSH.checkClusters(Relation<V> relation,
             TCustomHashMap<long[],List<ArrayModifiableDBIDs>> clustersMap)
Removes the clusters with size < minpts from the cluster map and adds them
 to their parents. 
 | 
private Clustering<SubspaceModel> | 
DiSH.computeClusters(Relation<V> database,
               DiSH.DiSHClusterOrder clusterOrder)
Computes the hierarchical clusters according to the cluster order. 
 | 
private void | 
P3C.computeFuzzyMembership(Relation<V> relation,
                      ArrayList<P3C.Signature> clusterCores,
                      ModifiableDBIDs unassigned,
                      WritableDataStore<double[]> probClusterIGivenX,
                      List<MultivariateGaussianModel> models,
                      int dim)
Computes a fuzzy membership with the weights based on which cluster cores
 each data point is part of. 
 | 
private boolean | 
DOC.dimensionIsRelevant(int dimension,
                   Relation<V> relation,
                   DBIDs points)
Utility method to test if a given dimension is relevant as determined via a
 set of reference points (i.e. if the variance along the attribute is lower
 than the threshold). 
 | 
private double | 
PROCLUS.evaluateClusters(ArrayList<PROCLUS.PROCLUSCluster> clusters,
                long[][] dimensions,
                Relation<V> database)
Evaluates the quality of the clusters. 
 | 
private TCustomHashMap<long[],List<ArrayModifiableDBIDs>> | 
DiSH.extractClusters(Relation<V> relation,
               DiSH.DiSHClusterOrder clusterOrder)
Extracts the clusters from the cluster order. 
 | 
private List<PROCLUS.PROCLUSCluster> | 
PROCLUS.finalAssignment(List<Pair<Vector,long[]>> dimensions,
               Relation<V> database)
Refinement step to assign the objects to the final clusters. 
 | 
private List<CLIQUESubspace<V>> | 
CLIQUE.findDenseSubspaceCandidates(Relation<V> database,
                           List<CLIQUESubspace<V>> denseSubspaces)
Determines the  
k-dimensional dense subspace candidates from the
 specified (k-1)-dimensional dense subspaces. | 
private List<CLIQUESubspace<V>> | 
CLIQUE.findDenseSubspaces(Relation<V> database,
                  List<CLIQUESubspace<V>> denseSubspaces)
Determines the  
k-dimensional dense subspaces and performs a pruning
 if this option is chosen. | 
private long[][] | 
PROCLUS.findDimensions(ArrayDBIDs medoids,
              Relation<V> database,
              DistanceQuery<V> distFunc,
              RangeQuery<V> rangeQuery)
Determines the set of correlated dimensions for each medoid in the
 specified medoid set. 
 | 
private List<Pair<Vector,long[]>> | 
PROCLUS.findDimensions(ArrayList<PROCLUS.PROCLUSCluster> clusters,
              Relation<V> database)
Refinement step that determines the set of correlated dimensions for each
 cluster centroid. 
 | 
private List<CLIQUESubspace<V>> | 
CLIQUE.findOneDimensionalDenseSubspaceCandidates(Relation<V> database)
Determines the one-dimensional dense subspace candidates by making a pass
 over the database. 
 | 
private List<CLIQUESubspace<V>> | 
CLIQUE.findOneDimensionalDenseSubspaces(Relation<V> database)
Determines the one dimensional dense subspaces and performs a pruning if
 this option is chosen. 
 | 
private void | 
P3C.findOutliers(Relation<V> relation,
            List<MultivariateGaussianModel> models,
            ArrayList<P3C.ClusterCandidate> clusterCandidates,
            ModifiableDBIDs noise)
Performs outlier detection by testing the Mahalanobis distance of each
 point in a cluster against the critical value of the ChiSquared
 distribution with as many degrees of freedom as the cluster has relevant
 attributes. 
 | 
private Pair<long[],ArrayModifiableDBIDs> | 
DiSH.findParent(Relation<V> relation,
          Pair<long[],ArrayModifiableDBIDs> child,
          TCustomHashMap<long[],List<ArrayModifiableDBIDs>> clustersMap)
Returns the parent of the specified cluster 
 | 
private DataStore<DoubleDBIDList> | 
PROCLUS.getLocalities(DBIDs medoids,
             Relation<V> database,
             DistanceQuery<V> distFunc,
             RangeQuery<V> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the
 objects in the sphere centered at m with radius minDist are determined,
 where minDist is the minimum distance between medoid m and any other medoid
 m_i. 
 | 
private Collection<CLIQUEUnit<V>> | 
CLIQUE.initOneDimensionalUnits(Relation<V> database)
Initializes and returns the one dimensional units. 
 | 
private boolean | 
DiSH.isParent(Relation<V> relation,
        Cluster<SubspaceModel> parent,
        Hierarchy.Iter<Cluster<SubspaceModel>> iter,
        int db_dim)
Returns true, if the specified parent cluster is a parent of one child of
 the children clusters. 
 | 
private Cluster<SubspaceModel> | 
DOC.makeCluster(Relation<V> relation,
           DBIDs C,
           long[] D)
Utility method to create a subspace cluster from a list of DBIDs and the
 relevant attributes. 
 | 
private SetDBIDs[][] | 
P3C.partitionData(Relation<V> relation,
             int bins)
Partition the data set into  
bins bins in each dimension
 independently. | 
Clustering<SubspaceModel> | 
PROCLUS.run(Database database,
   Relation<V> relation)
Performs the PROCLUS algorithm on the given database. 
 | 
Clustering<SubspaceModel> | 
P3C.run(Database database,
   Relation<V> relation)
Performs the P3C algorithm on the given Database. 
 | 
ClusterOrder | 
HiSC.run(Database db,
   Relation<V> relation)  | 
Clustering<SubspaceModel> | 
DiSH.run(Database db,
   Relation<V> relation)
Performs the DiSH algorithm on the given database. 
 | 
Clustering<SubspaceModel> | 
DOC.run(Database database,
   Relation<V> relation)
Performs the DOC or FastDOC (as configured) algorithm on the given
 Database. 
 | 
Clustering<SubspaceModel> | 
SUBCLU.run(Relation<V> relation)
Performs the SUBCLU algorithm on the given database. 
 | 
Clustering<SubspaceModel> | 
CLIQUE.run(Relation<V> relation)
Performs the CLIQUE algorithm on the given database. 
 | 
private List<Cluster<Model>> | 
SUBCLU.runDBSCAN(Relation<V> relation,
         DBIDs ids,
         Subspace subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the
 given subspace. 
 | 
private Cluster<SubspaceModel> | 
DOC.runDOC(Database database,
      Relation<V> relation,
      ArrayModifiableDBIDs S,
      int d,
      int n,
      int m,
      int r,
      int minClusterSize)
Performs a single run of DOC, finding a single cluster. 
 | 
private Cluster<SubspaceModel> | 
DOC.runFastDOC(Database database,
          Relation<V> relation,
          ArrayModifiableDBIDs S,
          int d,
          int n,
          int m,
          int r)
Performs a single run of FastDOC, finding a single cluster. 
 | 
private List<Cluster<SubspaceModel>> | 
DiSH.sortClusters(Relation<V> relation,
            TCustomHashMap<long[],List<ArrayModifiableDBIDs>> clustersMap)
Returns a sorted list of the clusters w.r.t. the subspace dimensionality in
 descending order. 
 | 
| Constructor and Description | 
|---|
DiSH.Instance(Database db,
             Relation<V> relation)
Constructor. 
 | 
HiSC.Instance(Database db,
             Relation<V> relation)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private HashMap<String,DBIDs> | 
ByLabelClustering.multipleAssignment(Relation<?> data)
Assigns the objects of the database to multiple clusters according to their
 labels. 
 | 
Clustering<Model> | 
TrivialAllNoise.run(Relation<?> relation)  | 
Clustering<Model> | 
TrivialAllInOne.run(Relation<?> relation)  | 
Clustering<Model> | 
ByLabelHierarchicalClustering.run(Relation<?> relation)
Run the actual clustering algorithm. 
 | 
Clustering<Model> | 
ByLabelClustering.run(Relation<?> relation)
Run the actual clustering algorithm. 
 | 
Clustering<Model> | 
ByModelClustering.run(Relation<Model> relation)
Run the actual clustering algorithm. 
 | 
private HashMap<String,DBIDs> | 
ByLabelClustering.singleAssignment(Relation<?> data)
Assigns the objects of the database to single clusters according to their
 labels. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<? extends UncertainObject> | 
FDBSCANNeighborPredicate.Instance.relation
The relation holding the uncertain objects. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected boolean | 
UKMeans.assignToNearestCluster(Relation<DiscreteUncertainObject> relation,
                      List<Vector> means,
                      List<? extends ModifiableDBIDs> clusters,
                      WritableIntegerDataStore assignment,
                      double[] varsum)
Returns a list of clusters. 
 | 
protected List<Vector> | 
UKMeans.means(List<? extends ModifiableDBIDs> clusters,
     List<? extends NumberVector> means,
     Relation<DiscreteUncertainObject> database)
Returns the mean vectors of the given clusters in the given database. 
 | 
Clustering<?> | 
RepresentativeUncertainClustering.run(Database database,
   Relation<? extends UncertainObject> relation)
This run method will do the wrapping. 
 | 
C | 
CenterOfMassMetaClustering.run(Database database,
   Relation<? extends UncertainObject> relation)
This run method will do the wrapping. 
 | 
Clustering<?> | 
UKMeans.run(Database database,
   Relation<DiscreteUncertainObject> relation)
Run the clustering. 
 | 
| Constructor and Description | 
|---|
FDBSCANNeighborPredicate.Instance(double epsilon,
                                 int sampleSize,
                                 double threshold,
                                 Relation<? extends UncertainObject> relation,
                                 RandomFactory rand)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private FPGrowth.FPTree | 
FPGrowth.buildFPTree(Relation<BitVector> relation,
           int[] iidx,
           int items)
Build the actual FP-tree structure. 
 | 
protected List<OneItemset> | 
APRIORI.buildFrequentOneItemsets(Relation<? extends SparseFeatureVector<?>> relation,
                        int dim,
                        int needed)
Build the 1-itemsets. 
 | 
protected List<SparseItemset> | 
APRIORI.buildFrequentTwoItemsets(List<OneItemset> oneitems,
                        Relation<BitVector> relation,
                        int dim,
                        int needed,
                        DBIDs ids,
                        ArrayModifiableDBIDs survivors)
Build the 2-itemsets. 
 | 
private DBIDs[] | 
Eclat.buildIndex(Relation<BitVector> relation,
          int dim,
          int minsupp)  | 
private int[] | 
FPGrowth.countItemSupport(Relation<BitVector> relation,
                int dim)
Count the support of each 1-item. 
 | 
protected List<? extends Itemset> | 
APRIORI.frequentItemsets(List<? extends Itemset> candidates,
                Relation<BitVector> relation,
                int needed,
                DBIDs ids,
                ArrayModifiableDBIDs survivors,
                int length)
Returns the frequent BitSets out of the given BitSets with respect to the
 given database. 
 | 
protected List<SparseItemset> | 
APRIORI.frequentItemsetsSparse(List<SparseItemset> candidates,
                      Relation<BitVector> relation,
                      int needed,
                      DBIDs ids,
                      ArrayModifiableDBIDs survivors,
                      int length)
Returns the frequent BitSets out of the given BitSets with respect to the
 given database. 
 | 
FrequentItemsetsResult | 
FPGrowth.run(Database db,
   Relation<BitVector> relation)
Run the FP-Growth algorithm 
 | 
FrequentItemsetsResult | 
Eclat.run(Database db,
   Relation<BitVector> relation)
Run the Eclat algorithm 
 | 
FrequentItemsetsResult | 
APRIORI.run(Relation<BitVector> relation)
Performs the APRIORI algorithm on the given database. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private double | 
GaussianUniformMixture.loglikelihoodNormal(DBIDs objids,
                   Relation<V> database)
Computes the loglikelihood of all normal objects. 
 | 
OutlierResult | 
OPTICSOF.run(Database database,
   Relation<O> relation)
Perform OPTICS-based outlier detection. 
 | 
OutlierResult | 
DWOF.run(Database database,
   Relation<O> relation)
Performs the Generalized DWOF_SCORE algorithm on the given database by
 calling all the other methods in the proper order. 
 | 
OutlierResult | 
SimpleCOP.run(Database database,
   Relation<V> data)  | 
OutlierResult | 
GaussianUniformMixture.run(Relation<V> relation)
Run the algorithm 
 | 
OutlierResult | 
GaussianModel.run(Relation<V> relation)
Run the algorithm 
 | 
OutlierResult | 
COP.run(Relation<V> relation)
Process a single relation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
OutlierResult | 
LBABOD.run(Database db,
   Relation<V> relation)
Run LB-ABOD on the data set. 
 | 
OutlierResult | 
FastABOD.run(Database db,
   Relation<V> relation)
Run Fast-ABOD on the data set. 
 | 
OutlierResult | 
ABOD.run(Database db,
   Relation<V> relation)
Run ABOD on the data set. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
OutlierResult | 
KMeansOutlierDetection.run(Database database,
   Relation<O> relation)
Run the outlier detection algorithm. 
 | 
OutlierResult | 
EMOutlier.run(Database database,
   Relation<V> relation)
Runs the algorithm in the timed evaluation part. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) Relation<O> | 
HilOut.HilbertFeatures.relation
Relation indexed 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected DoubleDBIDList | 
ReferenceBasedOutlierDetection.computeDistanceVector(NumberVector refPoint,
                     Relation<? extends NumberVector> database,
                     PrimitiveDistanceQuery<? super NumberVector> distFunc)
Computes for each object the distance to one reference point. 
 | 
protected DoubleDataStore | 
DBOutlierScore.computeOutlierScores(Database database,
                    Relation<O> relation,
                    double d)  | 
protected DoubleDataStore | 
DBOutlierDetection.computeOutlierScores(Database database,
                    Relation<O> relation,
                    double neighborhoodSize)  | 
protected abstract DoubleDataStore | 
AbstractDBOutlier.computeOutlierScores(Database database,
                    Relation<O> relation,
                    double d)
computes an outlier score for each object of the database. 
 | 
OutlierResult | 
ReferenceBasedOutlierDetection.run(Database database,
   Relation<? extends NumberVector> relation)
Run the algorithm on the given relation. 
 | 
OutlierResult | 
ODIN.run(Database database,
   Relation<O> relation)
Run the ODIN algorithm 
 | 
OutlierResult | 
LocalIsolationCoefficient.run(Database database,
   Relation<O> relation)
Runs the algorithm in the timed evaluation part. 
 | 
OutlierResult | 
KNNWeightOutlier.run(Database database,
   Relation<O> relation)
Runs the algorithm in the timed evaluation part. 
 | 
OutlierResult | 
KNNOutlier.run(Database database,
   Relation<O> relation)
Runs the algorithm in the timed evaluation part. 
 | 
OutlierResult | 
HilOut.run(Database database,
   Relation<O> relation)  | 
OutlierResult | 
AbstractDBOutlier.run(Database database,
   Relation<O> relation)
Runs the algorithm in the timed evaluation part. 
 | 
OutlierResult | 
KNNOutlier.run(Relation<O> relation)
Runs the algorithm in the timed evaluation part. 
 | 
| Constructor and Description | 
|---|
HilOut.HilbertFeatures(Relation<O> relation,
                      double[] min,
                      double diameter)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
OutlierResult | 
ParallelKNNWeightOutlier.run(Database database,
   Relation<O> relation)
Run the parallel kNN weight outlier detector. 
 | 
OutlierResult | 
ParallelKNNOutlier.run(Database database,
   Relation<O> relation)  | 
| Modifier and Type | Method and Description | 
|---|---|
OutlierResult | 
IntrinsicDimensionalityOutlier.run(Database database,
   Relation<O> relation)
Run the algorithm 
 | 
OutlierResult | 
IDOS.run(Database database,
   Relation<O> relation)
Run the algorithm 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<? extends NumberVector> | 
ALOCI.ALOCIQuadTree.relation
Relation indexed. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
INFLO.computeINFLO(Relation<O> relation,
            ModifiableDBIDs pruned,
            WritableDataStore<ModifiableDBIDs> knns,
            WritableDataStore<ModifiableDBIDs> rnns,
            WritableDoubleDataStore density,
            WritableDoubleDataStore inflos,
            DoubleMinMax inflominmax)
Compute the final INFLO scores. 
 | 
protected void | 
INFLO.computeNeighborhoods(Relation<O> relation,
                    KNNQuery<O> knnQuery,
                    ModifiableDBIDs pruned,
                    WritableDataStore<ModifiableDBIDs> knns,
                    WritableDataStore<ModifiableDBIDs> rnns,
                    WritableDoubleDataStore density)
Compute neighborhoods 
 | 
protected void | 
LoOP.computePDists(Relation<O> relation,
             KNNQuery<O> knn,
             WritableDoubleDataStore pdists)
Compute the probabilistic distances used by LoOP. 
 | 
protected double | 
LoOP.computePLOFs(Relation<O> relation,
            KNNQuery<O> knn,
            WritableDoubleDataStore pdists,
            WritableDoubleDataStore plofs)
Compute the LOF values, using the pdist distances. 
 | 
private int | 
KDEOS.dimensionality(Relation<O> rel)
Ugly hack to allow using this implementation without having a well-defined
 dimensionality. 
 | 
protected void | 
KDEOS.estimateDensities(Relation<O> rel,
                 KNNQuery<O> knnq,
                 DBIDs ids,
                 WritableDataStore<double[]> densities)
Perform the kernel density estimation step. 
 | 
private Pair<Pair<KNNQuery<O>,KNNQuery<O>>,Pair<RKNNQuery<O>,RKNNQuery<O>>> | 
OnlineLOF.getKNNAndRkNNQueries(Database database,
                    Relation<O> relation,
                    StepProgress stepprog)
Get the kNN and rkNN queries for the algorithm. 
 | 
protected Pair<KNNQuery<O>,KNNQuery<O>> | 
LoOP.getKNNQueries(Database database,
             Relation<O> relation,
             StepProgress stepprog)
Get the kNN queries for the algorithm. 
 | 
private Pair<KNNQuery<O>,KNNQuery<O>> | 
FlexibleLOF.getKNNQueries(Database database,
             Relation<O> relation,
             StepProgress stepprog)
Get the kNN queries for the algorithm. 
 | 
OutlierResult | 
VarianceOfVolume.run(Database database,
   Relation<O> relation)
Runs the VOV algorithm on the given database. 
 | 
OutlierResult | 
SimplifiedLOF.run(Database database,
   Relation<O> relation)
Run the Simple LOF algorithm. 
 | 
OutlierResult | 
SimpleKernelDensityLOF.run(Database database,
   Relation<O> relation)
Run the naive kernel density LOF algorithm. 
 | 
OutlierResult | 
OnlineLOF.run(Database database,
   Relation<O> relation)
Performs the Generalized LOF_SCORE algorithm on the given database by
 calling  
#doRunInTime(Database) and adds a OnlineLOF.LOFKNNListener to
 the preprocessors. | 
OutlierResult | 
LoOP.run(Database database,
   Relation<O> relation)
Performs the LoOP algorithm on the given database. 
 | 
OutlierResult | 
LOF.run(Database database,
   Relation<O> relation)
Runs the LOF algorithm on the given database. 
 | 
OutlierResult | 
LOCI.run(Database database,
   Relation<O> relation)
Run the algorithm 
 | 
OutlierResult | 
LDOF.run(Database database,
   Relation<O> relation)
Run the algorithm 
 | 
OutlierResult | 
LDF.run(Database database,
   Relation<O> relation)
Run the naive kernel density LOF algorithm. 
 | 
OutlierResult | 
KDEOS.run(Database database,
   Relation<O> rel)
Run the KDEOS outlier detection algorithm. 
 | 
OutlierResult | 
INFLO.run(Database database,
   Relation<O> relation)
Run the algorithm 
 | 
OutlierResult | 
FlexibleLOF.run(Database database,
   Relation<O> relation)
Performs the Generalized LOF algorithm on the given database by calling
  
FlexibleLOF.doRunInTime(de.lmu.ifi.dbs.elki.database.ids.DBIDs, de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery<O>, de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery<O>, de.lmu.ifi.dbs.elki.logging.progress.StepProgress). | 
OutlierResult | 
COF.run(Database database,
   Relation<O> relation)
Runs the COF algorithm on the given database. 
 | 
OutlierResult | 
ALOCI.run(Database database,
   Relation<O> relation)  | 
| Constructor and Description | 
|---|
ALOCI.ALOCIQuadTree(double[] min,
                   double[] max,
                   double[] shift,
                   int nmin,
                   Relation<? extends NumberVector> relation)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
OutlierResult | 
ParallelSimplifiedLOF.run(Database database,
   Relation<O> relation)  | 
OutlierResult | 
ParallelLOF.run(Database database,
   Relation<O> relation)  | 
| Modifier and Type | Method and Description | 
|---|---|
private ArrayList<ArrayDBIDs> | 
HiCS.buildOneDimIndexes(Relation<? extends NumberVector> relation)
Calculates "index structures" for every attribute, i.e. sorts a
 ModifiableArray of every DBID in the database for every dimension and
 stores them in a list 
 | 
private void | 
HiCS.calculateContrast(Relation<? extends NumberVector> relation,
                 HiCS.HiCSSubspace subspace,
                 ArrayList<ArrayDBIDs> subspaceIndex,
                 Random random)
Calculates the actual contrast of a given subspace. 
 | 
private Set<HiCS.HiCSSubspace> | 
HiCS.calculateSubspaces(Relation<? extends NumberVector> relation,
                  ArrayList<ArrayDBIDs> subspaceIndex,
                  Random random)
Identifies high contrast subspaces in a given full-dimensional database. 
 | 
OutlierResult | 
ExternalDoubleOutlierScore.run(Database database,
   Relation<?> relation)
Run the algorithm. 
 | 
OutlierResult | 
FeatureBagging.run(Database database,
   Relation<NumberVector> relation)
Run the algorithm on a data set. 
 | 
OutlierResult | 
HiCS.run(Relation<V> relation)
Perform HiCS on a given database. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
OutlierResult | 
TrimmedMeanApproach.run(Database database,
   Relation<N> nrel,
   Relation<? extends NumberVector> relation)
Run the algorithm. 
 | 
OutlierResult | 
TrimmedMeanApproach.run(Database database,
   Relation<N> nrel,
   Relation<? extends NumberVector> relation)
Run the algorithm. 
 | 
OutlierResult | 
CTLuZTestOutlier.run(Database database,
   Relation<N> nrel,
   Relation<? extends NumberVector> relation)
Main method. 
 | 
OutlierResult | 
CTLuZTestOutlier.run(Database database,
   Relation<N> nrel,
   Relation<? extends NumberVector> relation)
Main method. 
 | 
OutlierResult | 
CTLuScatterplotOutlier.run(Database database,
   Relation<N> nrel,
   Relation<? extends NumberVector> relation)
Main method. 
 | 
OutlierResult | 
CTLuScatterplotOutlier.run(Database database,
   Relation<N> nrel,
   Relation<? extends NumberVector> relation)
Main method. 
 | 
OutlierResult | 
CTLuMoranScatterplotOutlier.run(Database database,
   Relation<N> nrel,
   Relation<? extends NumberVector> relation)
Main method. 
 | 
OutlierResult | 
CTLuMoranScatterplotOutlier.run(Database database,
   Relation<N> nrel,
   Relation<? extends NumberVector> relation)
Main method. 
 | 
OutlierResult | 
CTLuMedianAlgorithm.run(Database database,
   Relation<N> nrel,
   Relation<? extends NumberVector> relation)
Main method. 
 | 
OutlierResult | 
CTLuMedianAlgorithm.run(Database database,
   Relation<N> nrel,
   Relation<? extends NumberVector> relation)
Main method. 
 | 
OutlierResult | 
SOF.run(Database database,
   Relation<N> spatial,
   Relation<O> relation)
The main run method 
 | 
OutlierResult | 
SOF.run(Database database,
   Relation<N> spatial,
   Relation<O> relation)
The main run method 
 | 
OutlierResult | 
SLOM.run(Database database,
   Relation<N> spatial,
   Relation<O> relation)  | 
OutlierResult | 
SLOM.run(Database database,
   Relation<N> spatial,
   Relation<O> relation)  | 
OutlierResult | 
CTLuMedianMultipleAttributes.run(Database database,
   Relation<N> spatial,
   Relation<O> attributes)
Run the algorithm 
 | 
OutlierResult | 
CTLuMedianMultipleAttributes.run(Database database,
   Relation<N> spatial,
   Relation<O> attributes)
Run the algorithm 
 | 
OutlierResult | 
CTLuMeanMultipleAttributes.run(Database database,
   Relation<N> spatial,
   Relation<O> attributes)
Run the algorithm 
 | 
OutlierResult | 
CTLuMeanMultipleAttributes.run(Database database,
   Relation<N> spatial,
   Relation<O> attributes)
Run the algorithm 
 | 
OutlierResult | 
CTLuGLSBackwardSearchAlgorithm.run(Database database,
   Relation<V> relationx,
   Relation<? extends NumberVector> relationy)
Run the algorithm 
 | 
OutlierResult | 
CTLuGLSBackwardSearchAlgorithm.run(Database database,
   Relation<V> relationx,
   Relation<? extends NumberVector> relationy)
Run the algorithm 
 | 
OutlierResult | 
CTLuRandomWalkEC.run(Relation<P> spatial,
   Relation<? extends NumberVector> relation)
Run the algorithm. 
 | 
OutlierResult | 
CTLuRandomWalkEC.run(Relation<P> spatial,
   Relation<? extends NumberVector> relation)
Run the algorithm. 
 | 
private Pair<DBIDVar,Double> | 
CTLuGLSBackwardSearchAlgorithm.singleIteration(Relation<V> relationx,
               Relation<? extends NumberVector> relationy)
Run a single iteration of the GLS-SOD modeling step 
 | 
private Pair<DBIDVar,Double> | 
CTLuGLSBackwardSearchAlgorithm.singleIteration(Relation<V> relationx,
               Relation<? extends NumberVector> relationy)
Run a single iteration of the GLS-SOD modeling step 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private DataStore<DBIDs> | 
ExtendedNeighborhood.Factory.extendNeighborhood(Database database,
                  Relation<? extends O> relation)
Method to load the external neighbors. 
 | 
NeighborSetPredicate | 
ExternalNeighborhood.Factory.instantiate(Database database,
           Relation<?> relation)  | 
NeighborSetPredicate | 
PrecomputedKNearestNeighborNeighborhood.Factory.instantiate(Database database,
           Relation<? extends O> relation)  | 
NeighborSetPredicate | 
NeighborSetPredicate.Factory.instantiate(Database database,
           Relation<? extends O> relation)
Instantiation method. 
 | 
NeighborSetPredicate | 
ExtendedNeighborhood.Factory.instantiate(Database database,
           Relation<? extends O> relation)  | 
private DataStore<DBIDs> | 
ExternalNeighborhood.Factory.loadNeighbors(Database database,
             Relation<?> relation)
Method to load the external neighbors. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
WeightedNeighborSetPredicate | 
WeightedNeighborSetPredicate.Factory.instantiate(Database database,
           Relation<? extends O> relation)
Instantiation method. 
 | 
UnweightedNeighborhoodAdapter | 
UnweightedNeighborhoodAdapter.Factory.instantiate(Database database,
           Relation<? extends O> relation)  | 
LinearWeightedExtendedNeighborhood | 
LinearWeightedExtendedNeighborhood.Factory.instantiate(Database database,
           Relation<? extends O> relation)  | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) Relation<V> | 
OUTRES.KernelDensityEstimator.relation
Relation to retrieve data from 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected ArrayList<ArrayList<DBIDs>> | 
AbstractAggarwalYuOutlier.buildRanges(Relation<V> relation)
Grid discretization of the data: 
Each attribute of data is divided into phi equi-depth ranges.  | 
private static double[] | 
SOD.computePerDimensionVariances(Relation<? extends NumberVector> relation,
                            Vector center,
                            DBIDs neighborhood)
Compute the per-dimension variances for the given neighborhood and center. 
 | 
private DBIDs | 
SOD.getNearestNeighbors(Relation<V> relation,
                   SimilarityQuery<V> simQ,
                   DBIDRef queryObject)
Get the k nearest neighbors in terms of the shared nearest neighbor
 distance. 
 | 
OutlierResult | 
AggarwalYuEvolutionary.run(Database database,
   Relation<V> relation)
Performs the evolutionary algorithm on the given database. 
 | 
OutlierResult | 
SOD.run(Relation<V> relation)
Performs the SOD algorithm on the given database. 
 | 
OutlierResult | 
OUTRES.run(Relation<V> relation)
Main loop for OUTRES 
 | 
OutlierResult | 
AggarwalYuNaive.run(Relation<V> relation)
Run the algorithm on the given relation. 
 | 
| Constructor and Description | 
|---|
AggarwalYuEvolutionary.EvolutionarySearch(Relation<V> relation,
                                         ArrayList<ArrayList<DBIDs>> ranges,
                                         int m,
                                         Random random)
Constructor. 
 | 
OUTRES.KernelDensityEstimator(Relation<V> relation)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
OutlierResult | 
LibSVMOneClassOutlierDetection.run(Relation<V> relation)
Run one-class SVM. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
OutlierResult | 
TrivialNoOutlier.run(Relation<?> relation)
Run the actual algorithm. 
 | 
OutlierResult | 
TrivialAllOutlier.run(Relation<?> relation)
Run the actual algorithm. 
 | 
OutlierResult | 
ByLabelOutlier.run(Relation<?> relation)
Run the algorithm 
 | 
OutlierResult | 
TrivialAverageCoordinateOutlier.run(Relation<? extends NumberVector> relation)
Run the actual algorithm. 
 | 
OutlierResult | 
TrivialGeneratedOutlier.run(Relation<Model> models,
   Relation<NumberVector> vecs,
   Relation<?> labels)
Run the algorithm 
 | 
OutlierResult | 
TrivialGeneratedOutlier.run(Relation<Model> models,
   Relation<NumberVector> vecs,
   Relation<?> labels)
Run the algorithm 
 | 
OutlierResult | 
TrivialGeneratedOutlier.run(Relation<Model> models,
   Relation<NumberVector> vecs,
   Relation<?> labels)
Run the algorithm 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
EvaluateRetrievalPerformance.computeDistances(ModifiableDoubleDBIDList nlist,
                DBIDIter query,
                DistanceQuery<O> distQuery,
                Relation<O> relation)
Compute the distances to the neighbor objects. 
 | 
protected double | 
HopkinsStatisticClusteringTendency.computeNNForRealData(KNNQuery<NumberVector> knnQuery,
                    Relation<NumberVector> relation,
                    int dim)
Search nearest neighbors for real data members. 
 | 
void | 
EvaluateRetrievalPerformance.KNNEvaluator.evaluateKNN(double[] knnperf,
           ModifiableDoubleDBIDList nlist,
           Relation<?> lrelation,
           TObjectIntHashMap<Object> counters,
           Object label)
Evaluate by simulating kNN classification for k=1...maxk 
 | 
private DoubleMinMax | 
DistanceStatisticsWithClasses.exactMinMax(Relation<O> relation,
           DistanceQuery<O> distFunc)
Compute the exact maximum and minimum. 
 | 
private void | 
EvaluateRetrievalPerformance.findMatches(ModifiableDBIDs posn,
           Relation<?> lrelation,
           Object label)
Find all matching objects. 
 | 
protected void | 
HopkinsStatisticClusteringTendency.initializeDataExtends(Relation<NumberVector> relation,
                     int dim,
                     double[] min,
                     double[] extend)
Initialize the uniform sampling area. 
 | 
Result | 
HopkinsStatisticClusteringTendency.run(Database database,
   Relation<NumberVector> relation)
Runs the algorithm in the timed evaluation part. 
 | 
HistogramResult<DoubleVector> | 
RankingQualityHistogram.run(Database database,
   Relation<O> relation)
Process a database 
 | 
Result | 
EstimateIntrinsicDimensionality.run(Database database,
   Relation<O> relation)  | 
Result | 
DistanceQuantileSampler.run(Database database,
   Relation<O> rel)  | 
EvaluateRetrievalPerformance.RetrievalPerformanceResult | 
EvaluateRetrievalPerformance.run(Database database,
   Relation<O> relation,
   Relation<?> lrelation)
Run the algorithm 
 | 
EvaluateRetrievalPerformance.RetrievalPerformanceResult | 
EvaluateRetrievalPerformance.run(Database database,
   Relation<O> relation,
   Relation<?> lrelation)
Run the algorithm 
 | 
CollectionResult<DoubleVector> | 
AveragePrecisionAtK.run(Database database,
   Relation<O> relation,
   Relation<?> lrelation)
Run the algorithm 
 | 
CollectionResult<DoubleVector> | 
AveragePrecisionAtK.run(Database database,
   Relation<O> relation,
   Relation<?> lrelation)
Run the algorithm 
 | 
Result | 
RangeQuerySelectivity.run(Database database,
   Relation<V> relation)  | 
private ScalesResult | 
AddSingleScale.run(Relation<? extends NumberVector> rel)
Add scales to a single vector relation. 
 | 
private DoubleMinMax | 
DistanceStatisticsWithClasses.sampleMinMax(Relation<O> relation,
            DistanceQuery<O> distFunc)
Estimate minimum and maximum via sampling. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static Relation<NumberVector> | 
GreedyEnsembleExperiment.applyPrescaling(ScalingFunction scaling,
               Relation<NumberVector> relation,
               DBIDs skip)
Prescale each vector (except when in  
skip) with the given scaling
 function. | 
| Modifier and Type | Method and Description | 
|---|---|
static Relation<NumberVector> | 
GreedyEnsembleExperiment.applyPrescaling(ScalingFunction scaling,
               Relation<NumberVector> relation,
               DBIDs skip)
Prescale each vector (except when in  
skip) with the given scaling
 function. | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<? extends NumberVector> | 
VectorUtil.SortDBIDsBySingleDimension.data
The relation to sort. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static Vector | 
VectorUtil.computeMedoid(Relation<? extends NumberVector> relation,
             DBIDs sample)
Compute medoid for a given subset. 
 | 
| Constructor and Description | 
|---|
VectorUtil.SortDBIDsBySingleDimension(Relation<? extends NumberVector> data)
Constructor. 
 | 
VectorUtil.SortDBIDsBySingleDimension(Relation<? extends NumberVector> data,
                                     int dim)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static NumberVector | 
ModelUtil.getPrototype(Model model,
            Relation<? extends NumberVector> relation)
Get the representative vector for a cluster model. 
 | 
static <V extends NumberVector>  | 
ModelUtil.getPrototype(Model model,
            Relation<? extends V> relation,
            NumberVector.Factory<V> factory)
Get (and convert!) 
 | 
static NumberVector | 
ModelUtil.getPrototypeOrCentroid(Model model,
                      Relation<? extends NumberVector> relation,
                      DBIDs ids)
Get the representative vector for a cluster model, or compute the centroid. 
 | 
static <V extends NumberVector>  | 
ModelUtil.getPrototypeOrCentroid(Model model,
                      Relation<? extends V> relation,
                      DBIDs ids,
                      NumberVector.Factory<V> factory)
Get the representative vector for a cluster model, or compute the centroid. 
 | 
| Constructor and Description | 
|---|
CorrelationAnalysisSolution(LinearEquationSystem solution,
                           Relation<V> db,
                           Matrix strongEigenvectors,
                           Matrix weakEigenvectors,
                           Matrix similarityMatrix,
                           Vector centroid)
Provides a new CorrelationAnalysisSolution holding the specified matrix. 
 | 
CorrelationAnalysisSolution(LinearEquationSystem solution,
                           Relation<V> db,
                           Matrix strongEigenvectors,
                           Matrix weakEigenvectors,
                           Matrix similarityMatrix,
                           Vector centroid,
                           NumberFormat nf)
Provides a new CorrelationAnalysisSolution holding the specified matrix and
 number format. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected List<Relation<?>> | 
AbstractDatabase.relations
The relations we manage. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private Relation<?> | 
HashmapDatabase.addNewRelation(SimpleTypeInformation<?> meta)
Add a new representation for the given meta. 
 | 
protected Relation<?>[] | 
HashmapDatabase.alignColumns(ObjectBundle pack)
Find a mapping from package columns to database columns, eventually adding
 new database columns when needed. 
 | 
<O> Relation<O> | 
Database.getRelation(TypeInformation restriction,
           Object... hints)
Get an object representation. 
 | 
<O> Relation<O> | 
AbstractDatabase.getRelation(TypeInformation restriction,
           Object... hints)  | 
| Modifier and Type | Method and Description | 
|---|---|
Collection<Relation<?>> | 
Database.getRelations()
Get all relations of a database. 
 | 
Collection<Relation<?>> | 
AbstractDatabase.getRelations()  | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
ProxyDatabase.addRelation(Relation<?> relation)
Add a new representation. 
 | 
<O> DistanceQuery<O> | 
Database.getDistanceQuery(Relation<O> relation,
                DistanceFunction<? super O> distanceFunction,
                Object... hints)
Get the distance query for a particular distance function. 
 | 
<O> DistanceQuery<O> | 
AbstractDatabase.getDistanceQuery(Relation<O> objQuery,
                DistanceFunction<? super O> distanceFunction,
                Object... hints)  | 
static <O> KNNQuery<O> | 
QueryUtil.getKNNQuery(Relation<O> relation,
           DistanceFunction<? super O> distanceFunction,
           Object... hints)
Get a KNN query object for the given distance function. 
 | 
static <O> RangeQuery<O> | 
QueryUtil.getRangeQuery(Relation<O> relation,
             DistanceFunction<? super O> distanceFunction,
             Object... hints)
Get a range query object for the given distance function for radius-based
 neighbor search. 
 | 
static <O> RKNNQuery<O> | 
QueryUtil.getRKNNQuery(Relation<O> relation,
            DistanceFunction<? super O> distanceFunction,
            Object... hints)
Get a rKNN query object for the given distance function. 
 | 
<O> SimilarityQuery<O> | 
Database.getSimilarityQuery(Relation<O> relation,
                  SimilarityFunction<? super O> similarityFunction,
                  Object... hints)
Get the similarity query for a particular similarity function. 
 | 
<O> SimilarityQuery<O> | 
AbstractDatabase.getSimilarityQuery(Relation<O> objQuery,
                  SimilarityFunction<? super O> similarityFunction,
                  Object... hints)  | 
| Constructor and Description | 
|---|
ProxyDatabase(DBIDs ids,
             Relation<?>... relations)
Constructor. 
 | 
| Constructor and Description | 
|---|
ProxyDatabase(DBIDs ids,
             Iterable<Relation<?>> relations)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Relation<? extends O> | 
AbstractDistanceQuery.relation
The data to use for this query 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Relation<? extends O> | 
DistanceQuery.getRelation()
Access the underlying data query. 
 | 
Relation<? extends O> | 
AbstractDistanceQuery.getRelation()  | 
| Constructor and Description | 
|---|
AbstractDatabaseDistanceQuery(Relation<? extends O> relation)
Constructor. 
 | 
AbstractDistanceQuery(Relation<? extends O> relation)
Constructor. 
 | 
DBIDDistanceQuery(Relation<DBID> relation,
                 DBIDDistanceFunction distanceFunction)
Constructor. 
 | 
DBIDRangeDistanceQuery(Relation<DBID> relation,
                      DBIDRangeDistanceFunction distanceFunction)
Constructor. 
 | 
PrimitiveDistanceQuery(Relation<? extends O> relation,
                      PrimitiveDistanceFunction<? super O> distanceFunction)
Constructor. 
 | 
PrimitiveDistanceSimilarityQuery(Relation<? extends O> relation,
                                PrimitiveDistanceFunction<? super O> distanceFunction,
                                PrimitiveSimilarityFunction<? super O> similarityFunction)
Constructor. 
 | 
SpatialPrimitiveDistanceQuery(Relation<? extends V> relation,
                             SpatialPrimitiveDistanceFunction<? super V> distanceFunction)  | 
| Modifier and Type | Field and Description | 
|---|---|
protected Relation<? extends O> | 
PreprocessorKNNQuery.relation
The data to use for this query 
 | 
protected Relation<? extends O> | 
AbstractDistanceKNNQuery.relation
The data to use for this query 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private KNNHeap | 
LinearScanPrimitiveDistanceKNNQuery.linearScan(Relation<? extends O> relation,
          DBIDIter iter,
          O obj,
          KNNHeap heap)
Main loop of the linear scan. 
 | 
private KNNHeap | 
LinearScanEuclideanDistanceKNNQuery.linearScan(Relation<? extends O> relation,
          DBIDIter iter,
          O obj,
          KNNHeap heap)
Main loop of the linear scan. 
 | 
| Constructor and Description | 
|---|
PreprocessorKNNQuery(Relation<O> relation,
                    AbstractMaterializeKNNPreprocessor<O> preprocessor)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Relation<? extends O> | 
AbstractDistanceRangeQuery.relation
The data to use for this query 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
LinearScanPrimitiveDistanceRangeQuery.linearScan(Relation<? extends O> relation,
          DBIDIter iter,
          O obj,
          double range,
          ModifiableDoubleDBIDList result)
Main loop for linear scan, 
 | 
private void | 
LinearScanEuclideanDistanceRangeQuery.linearScan(Relation<? extends O> relation,
          DBIDIter iter,
          O obj,
          double range,
          ModifiableDoubleDBIDList result)
Main loop for linear scan, 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Relation<? extends O> | 
PreprocessorRKNNQuery.relation
The data to use for this query 
 | 
protected Relation<? extends O> | 
AbstractRKNNQuery.relation
The data to use for this query 
 | 
| Constructor and Description | 
|---|
PreprocessorRKNNQuery(Relation<O> database,
                     MaterializeKNNAndRKNNPreprocessor.Factory<O> preprocessor)
Constructor. 
 | 
PreprocessorRKNNQuery(Relation<O> relation,
                     MaterializeKNNAndRKNNPreprocessor<O> preprocessor)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Relation<? extends O> | 
AbstractSimilarityQuery.relation
The data to use for this query 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Relation<? extends O> | 
SimilarityQuery.getRelation()
Access the underlying data query. 
 | 
Relation<? extends O> | 
AbstractSimilarityQuery.getRelation()  | 
| Constructor and Description | 
|---|
AbstractDBIDSimilarityQuery(Relation<? extends O> relation)
Constructor. 
 | 
AbstractSimilarityQuery(Relation<? extends O> relation)
Constructor. 
 | 
PrimitiveSimilarityQuery(Relation<? extends O> relation,
                        PrimitiveSimilarityFunction<? super O> similarityFunction)
Constructor. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
DoubleRelation
Interface for double-valued relations. 
 | 
interface  | 
ModifiableRelation<O>
Relations that allow modification. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractRelation<O>
Abstract base class for relations. 
 | 
class  | 
ConvertToStringView
Representation adapter that uses toString() to produce a string
 representation. 
 | 
class  | 
DBIDView
Pseudo-representation that is the object ID itself. 
 | 
class  | 
MaterializedDoubleRelation
Represents a single representation. 
 | 
class  | 
MaterializedRelation<O>
Represents a single representation. 
 | 
class  | 
ProjectedView<IN,OUT>
Projected relation view (non-materialized) 
 | 
class  | 
ProxyView<O>
A virtual partitioning of the database. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) Relation<? extends O> | 
RelationUtil.RelationObjectIterator.database
The database we use. 
 | 
(package private) Relation<? extends O> | 
RelationUtil.CollectionFromRelation.db
The database we query. 
 | 
(package private) Relation<?> | 
ConvertToStringView.existing
The database we use 
 | 
private Relation<O> | 
ProxyView.inner
The wrapped representation where we get the IDs from. 
 | 
private Relation<IN> | 
ProjectedView.inner
The wrapped representation where we get the IDs from. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <V extends NumberVector,T extends NumberVector>  | 
RelationUtil.relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <V extends FeatureVector<?>>  | 
RelationUtil.assumeVectorField(Relation<V> relation)
Get the vector field type information from a relation. 
 | 
static double[][] | 
RelationUtil.computeMinMax(Relation<? extends NumberVector> relation)
Determines the minimum and maximum values in each dimension of all objects
 stored in the given database. 
 | 
static int | 
RelationUtil.dimensionality(Relation<? extends SpatialComparable> relation)
Get the dimensionality of a database relation. 
 | 
static <V extends SpatialComparable>  | 
RelationUtil.getColumnLabel(Relation<? extends V> rel,
              int col)
Get the column name or produce a generic label "Column XY". 
 | 
static <V extends NumberVector>  | 
RelationUtil.getNumberVectorFactory(Relation<V> relation)
Get the number vector factory of a database relation. 
 | 
static double[][] | 
RelationUtil.relationAsMatrix(Relation<? extends NumberVector> relation,
                ArrayDBIDs ids)
Copy a relation into a double matrix. 
 | 
static <V extends NumberVector,T extends NumberVector>  | 
RelationUtil.relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics. 
 | 
static double[] | 
RelationUtil.variances(Relation<? extends NumberVector> database,
         NumberVector centroid,
         DBIDs ids)
Determines the variances in each dimension of the specified objects stored
 in the given database. 
 | 
| Constructor and Description | 
|---|
ConvertToStringView(Relation<?> existing)
Constructor. 
 | 
ProjectedView(Relation<IN> inner,
             Projection<IN,OUT> projection)
Constructor. 
 | 
ProxyView(DBIDs idview,
         Relation<O> inner)
Constructor. 
 | 
RelationUtil.CollectionFromRelation(Relation<? extends O> db)
Constructor. 
 | 
RelationUtil.RelationObjectIterator(DBIDIter iter,
                                   Relation<? extends O> database)
Full Constructor. 
 | 
RelationUtil.RelationObjectIterator(Relation<? extends O> database)
Simplified constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<O extends DBID>  | 
AbstractDBIDRangeDistanceFunction.instantiate(Relation<O> database)  | 
<T extends NumberVector>  | 
AbstractSpatialNorm.instantiate(Relation<T> relation)  | 
<T extends NumberVector>  | 
AbstractSpatialDistanceFunction.instantiate(Relation<T> relation)  | 
<T extends DBID>  | 
RandomStableDistanceFunction.instantiate(Relation<T> relation)  | 
<T extends O>  | 
SharedNearestNeighborJaccardDistanceFunction.instantiate(Relation<T> database)  | 
<T extends O>  | 
DistanceFunction.instantiate(Relation<T> relation)
Instantiate with a database to get the actual distance query. 
 | 
<T extends O>  | 
AbstractPrimitiveDistanceFunction.instantiate(Relation<T> relation)
Instantiate with a database to get the actual distance query. 
 | 
<T extends V>  | 
SpatialPrimitiveDistanceFunction.instantiate(Relation<T> relation)  | 
| Constructor and Description | 
|---|
AbstractDatabaseDistanceFunction.Instance(Relation<O> database,
                                         DistanceFunction<? super O> parent)
Constructor. 
 | 
AbstractIndexBasedDistanceFunction.Instance(Relation<O> database,
                                           I index,
                                           F parent)
Constructor. 
 | 
SharedNearestNeighborJaccardDistanceFunction.Instance(Relation<T> database,
                                                     SharedNearestNeighborIndex<T> preprocessor,
                                                     SharedNearestNeighborJaccardDistanceFunction<T> parent)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<T extends O>  | 
LnSimilarityAdapter.instantiate(Relation<T> database)  | 
<T extends O>  | 
LinearAdapterLinear.instantiate(Relation<T> database)  | 
<T extends O>  | 
ArccosSimilarityAdapter.instantiate(Relation<T> database)  | 
abstract <T extends O>  | 
AbstractSimilarityAdapter.instantiate(Relation<T> database)  | 
| Constructor and Description | 
|---|
AbstractSimilarityAdapter.Instance(Relation<O> database,
                                  DistanceFunction<? super O> parent,
                                  SimilarityQuery<? super O> similarityQuery)
Constructor. 
 | 
ArccosSimilarityAdapter.Instance(Relation<O> database,
                                DistanceFunction<? super O> parent,
                                SimilarityQuery<O> similarityQuery)
Constructor. 
 | 
LinearAdapterLinear.Instance(Relation<O> database,
                            DistanceFunction<? super O> parent,
                            SimilarityQuery<? super O> similarityQuery)
Constructor. 
 | 
LnSimilarityAdapter.Instance(Relation<O> database,
                            DistanceFunction<? super O> parent,
                            SimilarityQuery<O> similarityQuery)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<O extends DBID>  | 
FileBasedFloatDistanceFunction.instantiate(Relation<O> database)  | 
<O extends DBID>  | 
FileBasedDoubleDistanceFunction.instantiate(Relation<O> database)  | 
| Modifier and Type | Method and Description | 
|---|---|
<T extends NumberVector>  | 
HellingerDistanceFunction.instantiate(Relation<T> database)  | 
| Modifier and Type | Method and Description | 
|---|---|
<T extends O>  | 
JaccardSimilarityDistanceFunction.instantiate(Relation<T> relation)  | 
| Modifier and Type | Method and Description | 
|---|---|
<T extends NumberVector>  | 
SubspaceLPNormDistanceFunction.instantiate(Relation<T> database)  | 
| Modifier and Type | Field and Description | 
|---|---|
protected Relation<? extends DBID> | 
AbstractDBIDSimilarityFunction.database
The database we work on 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<T extends O>  | 
SimilarityFunction.instantiate(Relation<T> relation)
Instantiate with a representation to get the actual similarity query. 
 | 
<T extends O>  | 
SharedNearestNeighborSimilarityFunction.instantiate(Relation<T> database)  | 
<T extends O>  | 
IndexBasedSimilarityFunction.instantiate(Relation<T> database)
Preprocess the database to get the actual distance function. 
 | 
<T extends O>  | 
FractionalSharedNearestNeighborSimilarityFunction.instantiate(Relation<T> database)  | 
<T extends O>  | 
AbstractPrimitiveSimilarityFunction.instantiate(Relation<T> relation)  | 
abstract <T extends O>  | 
AbstractIndexBasedSimilarityFunction.instantiate(Relation<T> database)  | 
| Constructor and Description | 
|---|
AbstractDBIDSimilarityFunction(Relation<? extends DBID> database)
Constructor. 
 | 
AbstractIndexBasedSimilarityFunction.Instance(Relation<O> database,
                                             I index)
Constructor. 
 | 
FractionalSharedNearestNeighborSimilarityFunction.Instance(Relation<T> database,
                                                          SharedNearestNeighborIndex<T> preprocessor,
                                                          FractionalSharedNearestNeighborSimilarityFunction<? super T> similarityFunction)
Constructor. 
 | 
SharedNearestNeighborSimilarityFunction.Instance(Relation<O> database,
                                                SharedNearestNeighborIndex<O> preprocessor,
                                                SharedNearestNeighborSimilarityFunction<? super O> similarityFunction)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<T extends Cluster<?>>  | 
ClusterJaccardSimilarityFunction.instantiate(Relation<T> relation)  | 
<T extends Cluster<?>>  | 
ClusterIntersectionSimilarityFunction.instantiate(Relation<T> relation)  | 
<T extends Clustering<?>>  | 
ClusteringRandIndexSimilarityFunction.instantiate(Relation<T> relation)  | 
<T extends Clustering<?>>  | 
ClusteringFowlkesMallowsSimilarityFunction.instantiate(Relation<T> relation)  | 
<T extends Clustering<?>>  | 
ClusteringDistanceSimilarityFunction.instantiate(Relation<T> relation)  | 
<T extends Clustering<?>>  | 
ClusteringBCubedF1SimilarityFunction.instantiate(Relation<T> relation)  | 
<T extends Clustering<?>>  | 
ClusteringAdjustedRandIndexSimilarityFunction.instantiate(Relation<T> relation)  | 
| Modifier and Type | Method and Description | 
|---|---|
<T extends NumberVector>  | 
PolynomialKernelFunction.instantiate(Relation<T> database)  | 
| Constructor and Description | 
|---|
KernelMatrix(PrimitiveSimilarityFunction<? super O> kernelFunction,
            Relation<? extends O> relation,
            DBIDs ids)
Provides a new kernel matrix. 
 | 
KernelMatrix(SimilarityQuery<? super O> kernelFunction,
            Relation<? extends O> relation,
            DBIDs ids)
Provides a new kernel matrix. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static int | 
EvaluateSimplifiedSilhouette.centroids(Relation<? extends NumberVector> rel,
         List<? extends Cluster<?>> clusters,
         NumberVector[] centroids,
         NoiseHandling noiseOption)
Compute centroids. 
 | 
protected double[] | 
EvaluateConcordantPairs.computeWithinDistances(Relation<? extends NumberVector> rel,
                      List<? extends Cluster<?>> clusters,
                      int withinPairs)  | 
double | 
EvaluateVarianceRatioCriteria.evaluateClustering(Database db,
                  Relation<? extends NumberVector> rel,
                  Clustering<?> c)
Evaluate a single clustering. 
 | 
double | 
EvaluateSquaredErrors.evaluateClustering(Database db,
                  Relation<? extends NumberVector> rel,
                  Clustering<?> c)
Evaluate a single clustering. 
 | 
double | 
EvaluateSimplifiedSilhouette.evaluateClustering(Database db,
                  Relation<? extends NumberVector> rel,
                  Clustering<?> c)
Evaluate a single clustering. 
 | 
double | 
EvaluatePBMIndex.evaluateClustering(Database db,
                  Relation<? extends NumberVector> rel,
                  Clustering<?> c)
Evaluate a single clustering. 
 | 
double | 
EvaluateDaviesBouldin.evaluateClustering(Database db,
                  Relation<? extends NumberVector> rel,
                  Clustering<?> c)
Evaluate a single clustering. 
 | 
double | 
EvaluateConcordantPairs.evaluateClustering(Database db,
                  Relation<? extends NumberVector> rel,
                  Clustering<?> c)
Evaluate a single clustering. 
 | 
double | 
EvaluateCIndex.evaluateClustering(Database db,
                  Relation<? extends O> rel,
                  DistanceQuery<O> dq,
                  Clustering<?> c)
Evaluate a single clustering. 
 | 
double | 
EvaluateSilhouette.evaluateClustering(Database db,
                  Relation<O> rel,
                  DistanceQuery<O> dq,
                  Clustering<?> c)
Evaluate a single clustering. 
 | 
static int | 
EvaluateVarianceRatioCriteria.globalCentroid(Centroid overallCentroid,
              Relation<? extends NumberVector> rel,
              List<? extends Cluster<?>> clusters,
              NumberVector[] centroids,
              NoiseHandling noiseOption)
Update the global centroid. 
 | 
protected void | 
EvaluateCIndex.processSingleton(Cluster<?> cluster,
                Relation<? extends O> rel,
                DistanceQuery<O> dq,
                DoubleHeap maxDists,
                DoubleHeap minDists,
                int w)  | 
double[] | 
EvaluateDaviesBouldin.withinGroupDistances(Relation<? extends NumberVector> rel,
                    List<? extends Cluster<?>> clusters,
                    NumberVector[] centroids)  | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) Relation<?> | 
ComputeSimilarityMatrixImage.SimilarityMatrix.relation
The database 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Relation<?> | 
ComputeSimilarityMatrixImage.SimilarityMatrix.getRelation()
Get the relation 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private ComputeSimilarityMatrixImage.SimilarityMatrix | 
ComputeSimilarityMatrixImage.computeSimilarityMatrixImage(Relation<O> relation,
                            DBIDIter iter)
Compute the actual similarity image. 
 | 
| Constructor and Description | 
|---|
ComputeSimilarityMatrixImage.SimilarityMatrix(RenderedImage img,
                                             Relation<?> relation,
                                             ArrayDBIDs ids)
Constructor 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Relation<O> | 
AbstractIndex.relation
The representation we are bound to. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
I | 
IndexFactory.instantiate(Relation<V> relation)
Sets the database in the distance function of this index (if existing). 
 | 
| Constructor and Description | 
|---|
AbstractIndex(Relation<O> relation)
Constructor. 
 | 
AbstractRefiningIndex(Relation<O> relation)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Relation<? extends O> | 
PrecomputedDistanceMatrix.PrecomputedDistanceQuery.getRelation()  | 
| Modifier and Type | Method and Description | 
|---|---|
PrecomputedDistanceMatrix<O> | 
PrecomputedDistanceMatrix.Factory.instantiate(Relation<O> relation)  | 
| Constructor and Description | 
|---|
PrecomputedDistanceMatrix(Relation<O> relation,
                         DistanceFunction<? super O> distanceFunction)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
InMemoryIDistanceIndex<V> | 
InMemoryIDistanceIndex.Factory.instantiate(Relation<V> relation)  | 
| Constructor and Description | 
|---|
InMemoryIDistanceIndex(Relation<O> relation,
                      DistanceQuery<O> distance,
                      KMedoidsInitialization<O> initialization,
                      int numref)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
InMemoryInvertedIndex<V> | 
InMemoryInvertedIndex.Factory.instantiate(Relation<V> relation)  | 
| Constructor and Description | 
|---|
InMemoryInvertedIndex(Relation<V> relation)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
InMemoryLSHIndex.Instance | 
InMemoryLSHIndex.instantiate(Relation<V> relation)  | 
| Constructor and Description | 
|---|
InMemoryLSHIndex.Instance(Relation<V> relation,
                         ArrayList<? extends LocalitySensitiveHashFunction<? super V>> hashfunctions,
                         int numberOfBuckets)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector>> | 
CosineHashFunctionFamily.generateHashFunctions(Relation<? extends NumberVector> relation,
                     int l)  | 
ArrayList<? extends LocalitySensitiveHashFunction<? super NumberVector>> | 
AbstractProjectedHashFunctionFamily.generateHashFunctions(Relation<? extends NumberVector> relation,
                     int l)  | 
ArrayList<? extends LocalitySensitiveHashFunction<? super V>> | 
LocalitySensitiveHashFunctionFamily.generateHashFunctions(Relation<? extends V> relation,
                     int l)
Generate hash functions for the given relation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
I | 
LocalProjectionIndex.Factory.instantiate(Relation<V> relation)
Instantiate the index for a given database. 
 | 
| Constructor and Description | 
|---|
AbstractPreprocessorIndex(Relation<O> relation)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) Relation<V> | 
RandomProjectedNeighborsAndDensities.points
entire point set 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
RandomProjectedNeighborsAndDensities.computeSetsBounds(Relation<V> points,
                 int minSplitSize,
                 DBIDs ptList)
Create random projections, project points and put points into sets of size
 about minSplitSize/2 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private MetricalIndexTree<O,N,E> | 
MetricalIndexApproximationMaterializeKNNPreprocessor.getMetricalIndex(Relation<O> relation)
Do some (limited) type checking, then cast the database into a spatial
 database. 
 | 
SpatialApproximationMaterializeKNNPreprocessor<NumberVector,N,E> | 
SpatialApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<NumberVector> relation)  | 
RandomSampleKNNPreprocessor<O> | 
RandomSampleKNNPreprocessor.Factory.instantiate(Relation<O> relation)  | 
PartitionApproximationMaterializeKNNPreprocessor<O> | 
PartitionApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation)  | 
MetricalIndexApproximationMaterializeKNNPreprocessor<O,N,E> | 
MetricalIndexApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation)  | 
MaterializeKNNPreprocessor<O> | 
MaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation)  | 
MaterializeKNNAndRKNNPreprocessor<O> | 
MaterializeKNNAndRKNNPreprocessor.Factory.instantiate(Relation<O> relation)  | 
KNNJoinMaterializeKNNPreprocessor<O> | 
KNNJoinMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation)  | 
CachedDoubleDistanceKNNPreprocessor<O> | 
CachedDoubleDistanceKNNPreprocessor.Factory.instantiate(Relation<O> relation)  | 
abstract AbstractMaterializeKNNPreprocessor<O> | 
AbstractMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation)  | 
SpacefillingMaterializeKNNPreprocessor<V> | 
SpacefillingMaterializeKNNPreprocessor.Factory.instantiate(Relation<V> relation)  | 
SpacefillingKNNPreprocessor<V> | 
SpacefillingKNNPreprocessor.Factory.instantiate(Relation<V> relation)  | 
NaiveProjectedKNNPreprocessor<V> | 
NaiveProjectedKNNPreprocessor.Factory.instantiate(Relation<V> relation)  | 
| Constructor and Description | 
|---|
AbstractMaterializeKNNPreprocessor(Relation<O> relation,
                                  DistanceFunction<? super O> distanceFunction,
                                  int k)
Constructor. 
 | 
CachedDoubleDistanceKNNPreprocessor(Relation<O> relation,
                                   DistanceFunction<? super O> distanceFunction,
                                   int k,
                                   File file)
Constructor. 
 | 
KNNJoinMaterializeKNNPreprocessor(Relation<V> relation,
                                 DistanceFunction<? super V> distanceFunction,
                                 int k)
Constructor. 
 | 
MaterializeKNNAndRKNNPreprocessor(Relation<O> relation,
                                 DistanceFunction<? super O> distanceFunction,
                                 int k)
Constructor. 
 | 
MaterializeKNNPreprocessor(Relation<O> relation,
                          DistanceFunction<? super O> distanceFunction,
                          int k)
Constructor with preprocessing step. 
 | 
MetricalIndexApproximationMaterializeKNNPreprocessor(Relation<O> relation,
                                                    DistanceFunction<? super O> distanceFunction,
                                                    int k)
Constructor 
 | 
NaiveProjectedKNNPreprocessor(Relation<O> relation,
                             double window,
                             int projections,
                             RandomProjectionFamily proj,
                             Random random)
Constructor. 
 | 
PartitionApproximationMaterializeKNNPreprocessor(Relation<O> relation,
                                                DistanceFunction<? super O> distanceFunction,
                                                int k,
                                                int partitions,
                                                RandomFactory rnd)
Constructor 
 | 
RandomSampleKNNPreprocessor(Relation<O> relation,
                           DistanceFunction<? super O> distanceFunction,
                           int k,
                           double share,
                           RandomFactory rnd)
Constructor. 
 | 
SpacefillingKNNPreprocessor(Relation<O> relation,
                           List<SpatialSorter> curvegen,
                           double window,
                           int variants,
                           int odim,
                           RandomProjectionFamily proj,
                           Random random)
Constructor. 
 | 
SpacefillingMaterializeKNNPreprocessor(Relation<O> relation,
                                      DistanceFunction<? super O> distanceFunction,
                                      int k,
                                      List<SpatialSorter> curvegen,
                                      double window,
                                      int variants,
                                      Random random)
Constructor. 
 | 
SpatialApproximationMaterializeKNNPreprocessor(Relation<O> relation,
                                              DistanceFunction<? super O> distanceFunction,
                                              int k)
Constructor 
 | 
| Modifier and Type | Method and Description | 
|---|---|
I | 
FilteredLocalPCAIndex.Factory.instantiate(Relation<NV> relation)
Instantiate the index for a given database. 
 | 
abstract I | 
AbstractFilteredPCAIndex.Factory.instantiate(Relation<NV> relation)  | 
KNNQueryFilteredPCAIndex<V> | 
KNNQueryFilteredPCAIndex.Factory.instantiate(Relation<V> relation)  | 
| Constructor and Description | 
|---|
AbstractFilteredPCAIndex(Relation<NV> relation,
                        PCAFilteredRunner pca)
Constructor. 
 | 
KNNQueryFilteredPCAIndex(Relation<NV> relation,
                        PCAFilteredRunner pca,
                        KNNQuery<NV> knnQuery,
                        int k)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private long[] | 
HiSCPreferenceVectorIndex.determinePreferenceVector(Relation<V> relation,
                         DBIDRef id,
                         DBIDs neighborIDs,
                         StringBuilder msg)
Determines the preference vector according to the specified neighbor ids. 
 | 
private long[] | 
DiSHPreferenceVectorIndex.determinePreferenceVector(Relation<V> relation,
                         ModifiableDBIDs[] neighborIDs,
                         StringBuilder msg)
Determines the preference vector according to the specified neighbor ids. 
 | 
private long[] | 
DiSHPreferenceVectorIndex.determinePreferenceVectorByApriori(Relation<V> relation,
                                  ModifiableDBIDs[] neighborIDs,
                                  StringBuilder msg)
Determines the preference vector with the apriori strategy. 
 | 
private RangeQuery<V>[] | 
DiSHPreferenceVectorIndex.initRangeQueries(Relation<V> relation,
                int dimensionality)
Initializes the dimension selecting distancefunctions to determine the
 preference vectors. 
 | 
I | 
PreferenceVectorIndex.Factory.instantiate(Relation<V> relation)
Instantiate the index for a given database. 
 | 
HiSCPreferenceVectorIndex<V> | 
HiSCPreferenceVectorIndex.Factory.instantiate(Relation<V> relation)  | 
DiSHPreferenceVectorIndex<V> | 
DiSHPreferenceVectorIndex.Factory.instantiate(Relation<V> relation)  | 
abstract I | 
AbstractPreferenceVectorIndex.Factory.instantiate(Relation<V> relation)  | 
| Constructor and Description | 
|---|
AbstractPreferenceVectorIndex(Relation<NV> relation)
Constructor. 
 | 
DiSHPreferenceVectorIndex(Relation<V> relation,
                         double[] epsilon,
                         int minpts,
                         DiSHPreferenceVectorIndex.Strategy strategy)
Constructor. 
 | 
HiSCPreferenceVectorIndex(Relation<V> relation,
                         double alpha,
                         int k)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
SharedNearestNeighborPreprocessor<O> | 
SharedNearestNeighborPreprocessor.Factory.instantiate(Relation<O> relation)  | 
I | 
SharedNearestNeighborIndex.Factory.instantiate(Relation<O> database)
Instantiate the index for a given database. 
 | 
| Constructor and Description | 
|---|
SharedNearestNeighborPreprocessor(Relation<O> relation,
                                 int numberOfNeighbors,
                                 DistanceFunction<O> distanceFunction)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) Relation<O> | 
ProjectedIndex.relation
The relation we predend to index. 
 | 
(package private) Relation<I> | 
ProjectedIndex.view
The view that we really index. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
ProjectedIndex<O,I> | 
ProjectedIndex.Factory.instantiate(Relation<O> relation)  | 
ProjectedIndex<O,O> | 
LngLatAsECEFIndex.Factory.instantiate(Relation<O> relation)  | 
ProjectedIndex<O,O> | 
LatLngAsECEFIndex.Factory.instantiate(Relation<O> relation)  | 
| Constructor and Description | 
|---|
LatLngAsECEFIndex(Relation<O> relation,
                 Projection<O,O> proj,
                 Relation<O> view,
                 Index inner,
                 boolean norefine)
Constructor. 
 | 
LatLngAsECEFIndex(Relation<O> relation,
                 Projection<O,O> proj,
                 Relation<O> view,
                 Index inner,
                 boolean norefine)
Constructor. 
 | 
LngLatAsECEFIndex(Relation<O> relation,
                 Projection<O,O> proj,
                 Relation<O> view,
                 Index inner,
                 boolean norefine)
Constructor. 
 | 
LngLatAsECEFIndex(Relation<O> relation,
                 Projection<O,O> proj,
                 Relation<O> view,
                 Index inner,
                 boolean norefine)
Constructor. 
 | 
ProjectedIndex(Relation<O> relation,
              Projection<O,I> proj,
              Relation<I> view,
              Index inner,
              boolean norefine,
              double kmulti)
Constructor. 
 | 
ProjectedIndex(Relation<O> relation,
              Projection<O,I> proj,
              Relation<I> view,
              Index inner,
              boolean norefine,
              double kmulti)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
SimplifiedCoverTree<O> | 
SimplifiedCoverTree.Factory.instantiate(Relation<O> relation)  | 
CoverTree<O> | 
CoverTree.Factory.instantiate(Relation<O> relation)  | 
| Constructor and Description | 
|---|
AbstractCoverTree(Relation<O> relation,
                 DistanceFunction<? super O> distanceFunction,
                 double expansion,
                 int truncate)
Constructor. 
 | 
CoverTree(Relation<O> relation,
         DistanceFunction<? super O> distanceFunction,
         double expansion,
         int truncate)
Constructor. 
 | 
SimplifiedCoverTree(Relation<O> relation,
                   DistanceFunction<? super O> distanceFunction,
                   double expansion,
                   int truncate)
Constructor. 
 | 
| Constructor and Description | 
|---|
AbstractMkTree(Relation<O> relation,
              PageFile<N> pagefile,
              S settings)
Constructor. 
 | 
AbstractMkTreeUnified(Relation<O> relation,
                     PageFile<N> pagefile,
                     S settings)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<O> | 
MkAppTreeIndex.relation
The relation indexed 
 | 
| Modifier and Type | Method and Description | 
|---|---|
MkAppTreeIndex<O> | 
MkAppTreeFactory.instantiate(Relation<O> relation)  | 
| Constructor and Description | 
|---|
MkAppTree(Relation<O> relation,
         PageFile<MkAppTreeNode<O>> pageFile,
         MkAppTreeSettings<O> settings)
Constructor. 
 | 
MkAppTreeIndex(Relation<O> relation,
              PageFile<MkAppTreeNode<O>> pageFile,
              MkAppTreeSettings<O> settings)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<O> | 
MkCoPTreeIndex.relation
Relation indexed 
 | 
| Modifier and Type | Method and Description | 
|---|---|
MkCoPTreeIndex<O> | 
MkCopTreeFactory.instantiate(Relation<O> relation)  | 
| Constructor and Description | 
|---|
MkCoPTree(Relation<O> relation,
         PageFile<MkCoPTreeNode<O>> pagefile,
         MkTreeSettings<O,MkCoPTreeNode<O>,MkCoPEntry> settings)
Constructor. 
 | 
MkCoPTreeIndex(Relation<O> relation,
              PageFile<MkCoPTreeNode<O>> pageFile,
              MkTreeSettings<O,MkCoPTreeNode<O>,MkCoPEntry> settings)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<O> | 
MkMaxTreeIndex.relation
Relation indexed. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
MkMaxTreeIndex<O> | 
MkMaxTreeFactory.instantiate(Relation<O> relation)  | 
| Constructor and Description | 
|---|
MkMaxTree(Relation<O> relation,
         PageFile<MkMaxTreeNode<O>> pagefile,
         MkTreeSettings<O,MkMaxTreeNode<O>,MkMaxEntry> settings)
Constructor. 
 | 
MkMaxTreeIndex(Relation<O> relation,
              PageFile<MkMaxTreeNode<O>> pagefile,
              MkTreeSettings<O,MkMaxTreeNode<O>,MkMaxEntry> settings)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<O> | 
MkTabTreeIndex.relation
The relation indexed. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
MkTabTreeIndex<O> | 
MkTabTreeFactory.instantiate(Relation<O> relation)  | 
| Constructor and Description | 
|---|
MkTabTree(Relation<O> relation,
         PageFile<MkTabTreeNode<O>> pagefile,
         MkTreeSettings<O,MkTabTreeNode<O>,MkTabEntry> settings)
Constructor. 
 | 
MkTabTreeIndex(Relation<O> relation,
              PageFile<MkTabTreeNode<O>> pagefile,
              MkTreeSettings<O,MkTabTreeNode<O>,MkTabEntry> settings)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<O> | 
MTreeIndex.relation
The relation indexed. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
MTreeIndex<O> | 
MTreeFactory.instantiate(Relation<O> relation)  | 
| Constructor and Description | 
|---|
MTreeIndex(Relation<O> relation,
          PageFile<MTreeNode<O>> pagefile,
          MTreeSettings<O,MTreeNode<O>,MTreeEntry> settings)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
SmallMemoryKDTree<O> | 
SmallMemoryKDTree.Factory.instantiate(Relation<O> relation)  | 
MinimalisticMemoryKDTree<O> | 
MinimalisticMemoryKDTree.Factory.instantiate(Relation<O> relation)  | 
| Constructor and Description | 
|---|
MinimalisticMemoryKDTree.CountSortAccesses(Counter objaccess,
                                          Relation<? extends NumberVector> data)
Constructor. 
 | 
MinimalisticMemoryKDTree(Relation<O> relation,
                        int leafsize)
Constructor. 
 | 
SmallMemoryKDTree(Relation<O> relation,
                 int leafsize)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<O> | 
DeLiCluTreeIndex.relation
The relation we index. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
DeLiCluTreeIndex<O> | 
DeLiCluTreeFactory.instantiate(Relation<O> relation)  | 
| Constructor and Description | 
|---|
DeLiCluTreeIndex(Relation<O> relation,
                PageFile<DeLiCluNode> pagefile,
                AbstractRTreeSettings settings)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<O> | 
FlatRStarTreeIndex.relation
The relation we index 
 | 
| Modifier and Type | Method and Description | 
|---|---|
FlatRStarTreeIndex<O> | 
FlatRStarTreeFactory.instantiate(Relation<O> relation)  | 
| Constructor and Description | 
|---|
FlatRStarTreeIndex(Relation<O> relation,
                  PageFile<FlatRStarTreeNode> pagefile,
                  AbstractRTreeSettings settings)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Relation<? extends O> | 
RStarTreeRangeQuery.relation
Relation we query. 
 | 
protected Relation<? extends O> | 
RStarTreeKNNQuery.relation
Relation we query. 
 | 
| Constructor and Description | 
|---|
EuclideanRStarTreeKNNQuery(AbstractRStarTree<?,?,?> tree,
                          Relation<? extends O> relation)
Constructor. 
 | 
EuclideanRStarTreeRangeQuery(AbstractRStarTree<?,?,?> tree,
                            Relation<? extends O> relation)
Constructor. 
 | 
RStarTreeKNNQuery(AbstractRStarTree<?,?,?> tree,
                 Relation<? extends O> relation,
                 SpatialPrimitiveDistanceFunction<? super O> distanceFunction)
Constructor. 
 | 
RStarTreeRangeQuery(AbstractRStarTree<?,?,?> tree,
                   Relation<? extends O> relation,
                   SpatialPrimitiveDistanceFunction<? super O> distanceFunction)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<O> | 
RdKNNTree.relation
The relation we query. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
RdKNNTree<O> | 
RdKNNTreeFactory.instantiate(Relation<O> relation)  | 
| Constructor and Description | 
|---|
RdKNNTree(Relation<O> relation,
         PageFile<RdKNNNode> pagefile,
         RdkNNSettings<O> settings)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<O> | 
RStarTreeIndex.relation
Relation 
 | 
| Modifier and Type | Method and Description | 
|---|---|
RStarTreeIndex<O> | 
RStarTreeFactory.instantiate(Relation<O> relation)  | 
| Constructor and Description | 
|---|
RStarTreeIndex(Relation<O> relation,
              PageFile<RStarTreeNode> pagefile,
              AbstractRTreeSettings settings)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
VAFile<V> | 
VAFile.Factory.instantiate(Relation<V> relation)  | 
PartialVAFile<V> | 
PartialVAFile.Factory.instantiate(Relation<V> relation)  | 
void | 
VAFile.setPartitions(Relation<V> relation)
Initialize the data set grid by computing quantiles. 
 | 
| Constructor and Description | 
|---|
DAFile(Relation<? extends NumberVector> relation,
      int dimension,
      int partitions)
Constructor. 
 | 
PartialVAFile(int pageSize,
             Relation<V> relation,
             int partitions)
Constructor. 
 | 
VAFile(int pageSize,
      Relation<V> relation,
      int partitions)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private ArrayList<ArrayDBIDs> | 
HiCSDimensionSimilarity.buildOneDimIndexes(Relation<? extends NumberVector> relation,
                  DBIDs ids,
                  DimensionSimilarityMatrix matrix)
Calculates "index structures" for every attribute, i.e. sorts a
 ModifiableArray of every DBID in the database for every dimension and
 stores them in a list 
 | 
private ArrayList<ArrayList<DBIDs>> | 
MCEDimensionSimilarity.buildPartitions(Relation<? extends NumberVector> relation,
               DBIDs ids,
               int depth,
               DimensionSimilarityMatrix matrix)
Calculates "index structures" for every attribute, i.e. sorts a
 ModifiableArray of every DBID in the database for every dimension and
 stores them in a list. 
 | 
private double | 
HiCSDimensionSimilarity.calculateContrast(Relation<? extends NumberVector> relation,
                 DBIDs subset,
                 ArrayDBIDs subspaceIndex1,
                 ArrayDBIDs subspaceIndex2,
                 int dim1,
                 int dim2,
                 Random random)
Calculates the actual contrast of a given subspace 
 | 
void | 
SlopeInversionDimensionSimilarity.computeDimensionSimilarites(Relation<? extends NumberVector> relation,
                           DBIDs subset,
                           DimensionSimilarityMatrix matrix)  | 
void | 
SlopeDimensionSimilarity.computeDimensionSimilarites(Relation<? extends NumberVector> relation,
                           DBIDs subset,
                           DimensionSimilarityMatrix matrix)  | 
void | 
SURFINGDimensionSimilarity.computeDimensionSimilarites(Relation<? extends NumberVector> relation,
                           DBIDs subset,
                           DimensionSimilarityMatrix matrix)  | 
void | 
MCEDimensionSimilarity.computeDimensionSimilarites(Relation<? extends NumberVector> relation,
                           DBIDs subset,
                           DimensionSimilarityMatrix matrix)  | 
void | 
HiCSDimensionSimilarity.computeDimensionSimilarites(Relation<? extends NumberVector> relation,
                           DBIDs subset,
                           DimensionSimilarityMatrix matrix)  | 
void | 
HSMDimensionSimilarity.computeDimensionSimilarites(Relation<? extends NumberVector> relation,
                           DBIDs subset,
                           DimensionSimilarityMatrix matrix)  | 
void | 
CovarianceDimensionSimilarity.computeDimensionSimilarites(Relation<? extends NumberVector> relation,
                           DBIDs subset,
                           DimensionSimilarityMatrix matrix)  | 
void | 
DimensionSimilarity.computeDimensionSimilarites(Relation<? extends V> relation,
                           DBIDs subset,
                           DimensionSimilarityMatrix matrix)
Compute the dimension similarity matrix 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<F extends NumberVector>  | 
CovarianceMatrix.getMeanVector(Relation<? extends F> relation)
Get the mean as vector. 
 | 
static ProjectedCentroid | 
ProjectedCentroid.make(long[] dims,
    Relation<? extends NumberVector> relation)
Static Constructor from a relation. 
 | 
static ProjectedCentroid | 
ProjectedCentroid.make(long[] dims,
    Relation<? extends NumberVector> relation,
    DBIDs ids)
Static Constructor from a relation. 
 | 
static CovarianceMatrix | 
CovarianceMatrix.make(Relation<? extends NumberVector> relation)
Static Constructor from a full relation. 
 | 
static Centroid | 
Centroid.make(Relation<? extends NumberVector> relation)
Static constructor from an existing relation. 
 | 
static CovarianceMatrix | 
CovarianceMatrix.make(Relation<? extends NumberVector> relation,
    DBIDs ids)
Static Constructor from a full relation. 
 | 
static Centroid | 
Centroid.make(Relation<? extends NumberVector> relation,
    DBIDs ids)
Static constructor from an existing relation. 
 | 
<F extends NumberVector>  | 
Centroid.toVector(Relation<? extends F> relation)
Get the data as vector. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Matrix | 
StandardCovarianceMatrixBuilder.processDatabase(Relation<? extends NumberVector> database)
Compute Covariance Matrix for a complete database. 
 | 
PCAResult | 
PCARunner.processDatabase(Relation<? extends NumberVector> database)
Run PCA on the complete database. 
 | 
Matrix | 
CovarianceMatrixBuilder.processDatabase(Relation<? extends NumberVector> database)
Compute Covariance Matrix for a complete database. 
 | 
Matrix | 
AbstractCovarianceMatrixBuilder.processDatabase(Relation<? extends NumberVector> database)  | 
Matrix | 
WeightedCovarianceMatrixBuilder.processIds(DBIDs ids,
          Relation<? extends NumberVector> relation)
Weighted Covariance Matrix for a set of IDs. 
 | 
Matrix | 
StandardCovarianceMatrixBuilder.processIds(DBIDs ids,
          Relation<? extends NumberVector> database)
Compute Covariance Matrix for a collection of database IDs. 
 | 
Matrix | 
RANSACCovarianceMatrixBuilder.processIds(DBIDs ids,
          Relation<? extends NumberVector> relation)  | 
PCAResult | 
PCARunner.processIds(DBIDs ids,
          Relation<? extends NumberVector> database)
Run PCA on a collection of database IDs. 
 | 
PCAFilteredResult | 
PCAFilteredRunner.processIds(DBIDs ids,
          Relation<? extends NumberVector> database)
Run PCA on a collection of database IDs. 
 | 
PCAFilteredResult | 
PCAFilteredAutotuningRunner.processIds(DBIDs ids,
          Relation<? extends NumberVector> database)  | 
Matrix | 
CovarianceMatrixBuilder.processIds(DBIDs ids,
          Relation<? extends NumberVector> database)
Compute Covariance Matrix for a collection of database IDs. 
 | 
abstract Matrix | 
AbstractCovarianceMatrixBuilder.processIds(DBIDs ids,
          Relation<? extends NumberVector> database)  | 
PCAResult | 
PCARunner.processQueryResult(DoubleDBIDList results,
                  Relation<? extends NumberVector> database)
Run PCA on a QueryResult Collection. 
 | 
PCAFilteredResult | 
PCAFilteredRunner.processQueryResult(DoubleDBIDList results,
                  Relation<? extends NumberVector> database)
Run PCA on a QueryResult Collection. 
 | 
PCAFilteredResult | 
PCAFilteredAutotuningRunner.processQueryResult(DoubleDBIDList results,
                  Relation<? extends NumberVector> database)  | 
Matrix | 
CovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
                   Relation<? extends NumberVector> database)
Compute Covariance Matrix for a QueryResult Collection. 
 | 
Matrix | 
AbstractCovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
                   Relation<? extends NumberVector> database)  | 
Matrix | 
WeightedCovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
                   Relation<? extends NumberVector> database,
                   int k)
Compute Covariance Matrix for a QueryResult Collection. 
 | 
Matrix | 
CovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
                   Relation<? extends NumberVector> database,
                   int k)
Compute Covariance Matrix for a QueryResult Collection. 
 | 
Matrix | 
AbstractCovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
                   Relation<? extends NumberVector> database,
                   int k)  | 
| Modifier and Type | Method and Description | 
|---|---|
static LinearScale[] | 
Scales.calcScales(Relation<? extends SpatialComparable> db)
Compute a linear scale for each dimension. 
 | 
| Constructor and Description | 
|---|
ZCurveTransformer(Relation<? extends NumberVector> relation,
                 DBIDs ids)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static List<Relation<?>> | 
ResultUtil.getRelations(Result r)
Collect all Annotation results from a Result 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private DoubleObjPair<Polygon> | 
KMLOutputHandler.buildHullsRecursively(Cluster<Model> clu,
                     Hierarchy<Cluster<Model>> hier,
                     Map<Object,DoubleObjPair<Polygon>> hulls,
                     Relation<? extends NumberVector> coords)
Recursively step through the clusters to build the hulls. 
 | 
static SamplingResult | 
ResultUtil.getSamplingResult(Relation<?> rel)
Get the sampling result attached to a relation 
 | 
static ScalesResult | 
ResultUtil.getScalesResult(Relation<? extends SpatialComparable> rel)
Get (or create) a scales result for a relation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private StringBuilder | 
KMLOutputHandler.makeDescription(Collection<Relation<?>> relations,
               DBIDRef id)
Make an HTML description. 
 | 
| Constructor and Description | 
|---|
SamplingResult(Relation<?> rel)
Constructor. 
 | 
ScalesResult(Relation<? extends SpatialComparable> relation)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
TextWriter.printObject(TextWriterStream out,
           Database db,
           DBIDRef objID,
           List<Relation<?>> ra)  | 
private void | 
TextWriter.writeClusterResult(Database db,
                  StreamFactory streamOpener,
                  Clustering<Model> clustering,
                  Cluster<Model> clus,
                  List<Relation<?>> ra,
                  NamingScheme naming)  | 
private void | 
TextWriter.writeOrderingResult(Database db,
                   StreamFactory streamOpener,
                   OrderingResult or,
                   List<Relation<?>> ra)  | 
| Modifier and Type | Method and Description | 
|---|---|
static Relation<String> | 
DatabaseUtil.guessLabelRepresentation(Database database)
Guess a potentially label-like representation, preferring class labels. 
 | 
static Relation<String> | 
DatabaseUtil.guessObjectLabelRepresentation(Database database)
Guess a potentially object label-like representation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static SortedSet<ClassLabel> | 
DatabaseUtil.getClassLabels(Relation<? extends ClassLabel> database)
Retrieves all class labels within the database. 
 | 
static <O> KNNQuery<O> | 
DatabaseUtil.precomputedKNNQuery(Database database,
                   Relation<O> relation,
                   DistanceFunction<? super O> distf,
                   int k)
Get (or create) a precomputed kNN query for the database. 
 | 
static <O> KNNQuery<O> | 
DatabaseUtil.precomputedKNNQuery(Database database,
                   Relation<O> relation,
                   DistanceQuery<O> dq,
                   int k)
Get (or create) a precomputed kNN query for the database. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Collection<? extends NumberVector> | 
StarBasedReferencePoints.getReferencePoints(Relation<? extends NumberVector> db)  | 
Collection<? extends NumberVector> | 
ReferencePointsHeuristic.getReferencePoints(Relation<? extends NumberVector> db)
Get the reference points for the given database. 
 | 
Collection<? extends NumberVector> | 
RandomSampleReferencePoints.getReferencePoints(Relation<? extends NumberVector> db)  | 
Collection<? extends NumberVector> | 
RandomGeneratedReferencePoints.getReferencePoints(Relation<? extends NumberVector> db)  | 
Collection<? extends NumberVector> | 
GridBasedReferencePoints.getReferencePoints(Relation<? extends NumberVector> db)  | 
Collection<? extends NumberVector> | 
FullDatabaseReferencePoints.getReferencePoints(Relation<? extends NumberVector> db)  | 
Collection<? extends NumberVector> | 
AxisBasedReferencePoints.getReferencePoints(Relation<? extends NumberVector> db)  | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<?> | 
VisualizerContext.relation
Relation currently visualized. 
 | 
(package private) Relation<?> | 
VisualizationTask.relation
The main representation 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<R extends Relation<?>>  | 
VisualizationTask.getRelation()  | 
| Modifier and Type | Method and Description | 
|---|---|
Relation<?> | 
VisualizerContext.getRelation()
Current relation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
VisualizerContext.setRelation(Relation<?> rel)
Set the current relation. 
 | 
| Constructor and Description | 
|---|
VisualizationTask(String name,
                 VisualizerContext context,
                 Object result,
                 Relation<?> relation,
                 VisFactory factory)
Visualization task. 
 | 
VisualizerContext(ResultHierarchy hier,
                 Result start,
                 Relation<?> relation,
                 StyleLibrary stylelib,
                 Collection<VisualizationProcessor> factories)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) Relation<V> | 
ScatterPlotProjector.rel
Relation we project. 
 | 
(package private) Relation<V> | 
ParallelPlotProjector.rel
Relation we project. 
 | 
(package private) Relation<V> | 
HistogramProjector.rel
Relation we project. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Relation<V> | 
ScatterPlotProjector.getRelation()
The relation we project. 
 | 
Relation<V> | 
ParallelPlotProjector.getRelation()
The relation we project. 
 | 
Relation<V> | 
HistogramProjector.getRelation()
Get the relation we project. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private int | 
ScatterPlotFactory.dimensionality(Relation<?> rel)  | 
private int | 
ParallelPlotFactory.dimensionality(Relation<?> rel)  | 
| Constructor and Description | 
|---|
HistogramProjector(Relation<V> rel,
                  int maxdim)
Constructor. 
 | 
ParallelPlotProjector(Relation<V> rel)
Constructor. 
 | 
ScatterPlotProjector(Relation<V> rel,
                    int maxdim)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Relation<NV> | 
ColoredHistogramVisualizer.Instance.relation
The database we visualize 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Relation<NV> | 
AbstractParallelVisualization.relation
The representation we visualize 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Relation<? extends NumberVector> | 
AbstractScatterplotVisualization.rel
The representation we visualize 
 | 
protected Relation<PolygonsObject> | 
PolygonVisualization.Instance.rep
The representation we visualize 
 | 
private Relation<?> | 
TooltipStringVisualization.Instance.result
Number value to visualize 
 | 
private Relation<? extends Number> | 
TooltipScoreVisualization.Instance.result
Number value to visualize 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static boolean | 
TreeSphereVisualization.canVisualize(Relation<?> rel,
            AbstractMTree<?,?,?,?> tree)
Test for a visualizable index in the context's database. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Relation<Vector> | 
COPVectorVisualization.Instance.result
The outlier result to visualize 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Relation<? extends UncertainObject> | 
UncertainSamplesVisualization.Instance.rel
The representation we visualize 
 | 
protected Relation<? extends UncertainObject> | 
UncertainBoundingBoxVisualization.Instance.rel
The representation we visualize 
 | 
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.