
public class MultivariateGaussianModel extends Object implements EMClusterModel<EMModel>
| Modifier and Type | Field and Description |
|---|---|
(package private) Matrix |
covariance
Covariance matrix, and inverse.
|
(package private) double[][] |
elements
Matrix element reference.
|
(package private) Matrix |
invCovMatr
Covariance matrix, and inverse.
|
private static Logging |
LOG
Class logger.
|
(package private) Vector |
mean
Mean vector.
|
(package private) double[] |
mref
Temporary storage, to avoid reallocations.
|
(package private) double[] |
nmea
Temporary storage, to avoid reallocations.
|
(package private) double |
norm
Normalization factor.
|
(package private) double |
normDistrFactor
Normalization factor.
|
(package private) double |
weight
Weight aggregation sum
|
(package private) double |
wsum
Weight aggregation sum
|
| Constructor and Description |
|---|
MultivariateGaussianModel(double weight,
Vector mean)
Constructor.
|
MultivariateGaussianModel(double weight,
Vector mean,
double norm)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
void |
beginEStep()
Begin the E step.
|
double |
estimateDensity(NumberVector vec)
Estimate the likelihood of a vector.
|
EMModel |
finalizeCluster()
Finalize a cluster model.
|
void |
finalizeEStep()
Finalize the E step.
|
double |
getWeight()
Get the cluster weight.
|
double |
mahalanobisDistance(NumberVector vec)
Compute the Mahalanobis distance from the centroid for a given vector.
|
double |
mahalanobisDistance(Vector vec)
Compute the Mahalanobis distance from the centroid for a given vector.
|
void |
setWeight(double weight)
Set the cluster weight.
|
void |
updateE(NumberVector vec,
double wei)
Update the
|
private static Logging LOG
Vector mean
Matrix covariance
Matrix invCovMatr
double[] nmea
double[] mref
double[][] elements
double norm
double normDistrFactor
double weight
double wsum
public MultivariateGaussianModel(double weight,
Vector mean)
weight - Cluster weightmean - Initial meanpublic MultivariateGaussianModel(double weight,
Vector mean,
double norm)
weight - Cluster weightmean - Initial meannorm - Normalization factor.public void beginEStep()
EMClusterModelbeginEStep in interface EMClusterModel<EMModel>public void updateE(NumberVector vec, double wei)
EMClusterModelupdateE in interface EMClusterModel<EMModel>vec - Vector to processwei - Weightpublic void finalizeEStep()
EMClusterModelfinalizeEStep in interface EMClusterModel<EMModel>public double mahalanobisDistance(Vector vec)
vec - Vectorpublic double mahalanobisDistance(NumberVector vec)
vec - Vectorpublic double estimateDensity(NumberVector vec)
EMClusterModelestimateDensity in interface EMClusterModel<EMModel>vec - Vectorpublic double getWeight()
EMClusterModelgetWeight in interface EMClusterModel<EMModel>public void setWeight(double weight)
EMClusterModelsetWeight in interface EMClusterModel<EMModel>weight - Cluster weightpublic EMModel finalizeCluster()
EMClusterModelfinalizeCluster in interface EMClusterModel<EMModel>Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.