
V - vector datatype@Title(value="Compare-Means") @Reference(authors="S. J. Phillips", title="Acceleration of k-means and related clustering algorithms", booktitle="Proc. 4th Int. Workshop on Algorithm Engineering and Experiments (ALENEX 2002)", url="http://dx.doi.org/10.1007/3-540-45643-0_13") public class KMeansCompare<V extends NumberVector> extends AbstractKMeans<V,KMeansModel>
S. J. Phillips
Acceleration of k-means and related clustering algorithms
Proc. 4th Int. Workshop on Algorithm Engineering and Experiments (ALENEX
2002)
| Modifier and Type | Class and Description |
|---|---|
static class |
KMeansCompare.Parameterizer<V extends NumberVector>
Parameterization class.
|
| Modifier and Type | Field and Description |
|---|---|
private static String |
KEY
Key for statistics logging.
|
private static Logging |
LOG
The logger for this class.
|
initializer, k, maxiterdistanceFunctionINIT_ID, K_ID, MAXITER_ID, SEED_IDDISTANCE_FUNCTION_ID| Constructor and Description |
|---|
KMeansCompare(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization<? super V> initializer)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
private boolean |
assignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] varsum,
double[][] cdist,
LongStatistic diststat)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
private void |
recomputeSeperation(List<Vector> means,
double[][] cdist,
LongStatistic diststat)
Recompute the separation of cluster means.
|
Clustering<KMeansModel> |
run(Database database,
Relation<V> relation)
Run the clustering algorithm.
|
assignToNearestCluster, getInputTypeRestriction, incrementalUpdateMean, logVarstat, macQueenIterate, means, medians, setDistanceFunction, setKgetDistanceFunctionmakeParameterDistanceFunction, runclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrungetDistanceFunctionprivate static final Logging LOG
private static final String KEY
public KMeansCompare(NumberVectorDistanceFunction<? super V> distanceFunction, int k, int maxiter, KMeansInitialization<? super V> initializer)
distanceFunction - distance functionk - k parametermaxiter - Maxiter parameterinitializer - Initialization methodpublic Clustering<KMeansModel> run(Database database, Relation<V> relation)
KMeansdatabase - Database to run on.relation - Relation to process.private void recomputeSeperation(List<Vector> means, double[][] cdist, LongStatistic diststat)
means - Meanscdist - Center-to-Center distancesdiststat - Distance counting statisticprivate boolean assignToNearestCluster(Relation<V> relation, List<Vector> means, List<ModifiableDBIDs> clusters, WritableIntegerDataStore assignment, double[] varsum, double[][] cdist, LongStatistic diststat)
relation - Datameans - Current meansclusters - Current clustersassignment - Cluster assignmentvarsum - Variance sum countercdist - Centroid distancesdiststat - Distance statisticsprotected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<Clustering<KMeansModel>>Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.