See: Description

| Interface | Description |
|---|---|
| KMeans<V extends NumberVector,M extends Model> |
Some constants and options shared among kmeans family algorithms.
|
| Class | Description |
|---|---|
| AbstractKMeans<V extends NumberVector,M extends Model> |
Abstract base class for k-means implementations.
|
| AbstractKMeans.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| BestOfMultipleKMeans<V extends NumberVector,M extends MeanModel> |
Run K-Means multiple times, and keep the best run.
|
| BestOfMultipleKMeans.Parameterizer<V extends NumberVector,M extends MeanModel> |
Parameterization class.
|
| CLARA<V> |
Clustering Large Applications (CLARA) is a clustering method for large data
sets based on PAM, partitioning around medoids (
KMedoidsPAM) based on
sampling. |
| CLARA.Parameterizer<V> |
Parameterization class.
|
| KMeansBatchedLloyd<V extends NumberVector> |
An algorithm for k-means, using Lloyd-style bulk iterations.
|
| KMeansBatchedLloyd.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| KMeansBisecting<V extends NumberVector,M extends MeanModel> |
The bisecting k-means algorithm works by starting with an initial
partitioning into two clusters, then repeated splitting of the largest
cluster to get additional clusters.
|
| KMeansBisecting.Parameterizer<V extends NumberVector,M extends MeanModel> |
Parameterization class.
|
| KMeansCompare<V extends NumberVector> |
Compare-Means: Accelerated k-means by exploiting the triangle inequality and
pairwise distances of means to prune candidate means.
|
| KMeansCompare.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| KMeansElkan<V extends NumberVector> |
Elkan's fast k-means by exploiting the triangle inequality.
|
| KMeansElkan.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| KMeansHamerly<V extends NumberVector> |
Hamerly's fast k-means by exploiting the triangle inequality.
|
| KMeansHamerly.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| KMeansHybridLloydMacQueen<V extends NumberVector> |
A hybrid k-means algorithm, alternating between MacQueen-style incremental
processing and Lloyd-Style batch steps.
|
| KMeansHybridLloydMacQueen.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| KMeansLloyd<V extends NumberVector> |
The standard k-means algorithm, using Lloyd-style bulk iterations.
|
| KMeansLloyd.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| KMeansMacQueen<V extends NumberVector> |
The original k-means algorithm, using MacQueen style incremental updates;
making this effectively an "online" (streaming) algorithm.
|
| KMeansMacQueen.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| KMeansSort<V extends NumberVector> |
Sort-Means: Accelerated k-means by exploiting the triangle inequality and
pairwise distances of means to prune candidate means (with sorting).
|
| KMeansSort.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| KMediansLloyd<V extends NumberVector> |
k-medians clustering algorithm, but using Lloyd-style bulk iterations instead
of the more complicated approach suggested by Kaufman and Rousseeuw (see
KMedoidsPAM instead). |
| KMediansLloyd.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| KMedoidsEM<V> |
A k-medoids clustering algorithm, implemented as EM-style bulk algorithm.
|
| KMedoidsEM.Parameterizer<V> |
Parameterization class.
|
| KMedoidsPAM<V> |
The original PAM algorithm or k-medoids clustering, as proposed by Kaufman
and Rousseeuw in "Partitioning Around Medoids".
|
| KMedoidsPAM.Parameterizer<V> |
Parameterization class.
|
| SingleAssignmentKMeans<V extends NumberVector> |
Pseudo-k-Means variations, that assigns each object to the nearest center.
|
| SingleAssignmentKMeans.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| XMeans<V extends NumberVector,M extends MeanModel> |
X-means: Extending K-means with Efficient Estimation on the Number of
Clusters.
|
| XMeans.Parameterizer<V extends NumberVector,M extends MeanModel> |
Parameterization class.
|
K-means clustering and variations.
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.