
O - Object type@Title(value="HDBSCAN: Hierarchical Density-Based Spatial Clustering of Applications with Noise") @Description(value="Density-Based Clustering Based on Hierarchical Density Estimates") @Reference(authors="R. J. G. B. Campello, D. Moulavi, and J. Sander", title="Density-Based Clustering Based on Hierarchical Density Estimates", booktitle="Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD", url="http://dx.doi.org/10.1007/978-3-642-37456-2_14") public class HDBSCANLinearMemory<O> extends AbstractHDBSCAN<O,PointerDensityHierarchyRepresentationResult> implements HierarchicalClusteringAlgorithm
SLINKHDBSCANLinearMemory, by computing the minimum spanning tree
using Prim's algorithm (instead of SLINK; although the two are remarkably
similar). In order to produce the preferred internal format of hierarchical
clusterings (the compact pointer representation introduced in SLINK)
we have to perform a postprocessing conversion.
This implementation does not include the cluster extraction
discussed as Step 4. This functionality should however already be provided by
ExtractFlatClusteringFromHierarchy. For this reason, we also do
not include self-edges.
Reference:
R. J. G. B. Campello, D. Moulavi, and J. Sander
Density-Based Clustering Based on Hierarchical Density Estimates
Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining,
PAKDD
| Modifier and Type | Class and Description |
|---|---|
static class |
HDBSCANLinearMemory.Parameterizer<O>
Parameterization class
|
AbstractHDBSCAN.HDBSCANAdapter, AbstractHDBSCAN.HeapMSTCollector| Modifier and Type | Field and Description |
|---|---|
private static Logging |
LOG
Class logger.
|
minPtsDISTANCE_FUNCTION_ID| Constructor and Description |
|---|
HDBSCANLinearMemory(DistanceFunction<? super O> distanceFunction,
int minPts)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.
|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
PointerDensityHierarchyRepresentationResult |
run(Database db,
Relation<O> relation)
Run the algorithm
|
computeCoreDists, convertToPointerRepresentationgetDistanceFunctionmakeParameterDistanceFunction, runclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
public HDBSCANLinearMemory(DistanceFunction<? super O> distanceFunction, int minPts)
distanceFunction - Distance functionminPts - Minimum number of points for densitypublic PointerDensityHierarchyRepresentationResult run(Database db, Relation<O> relation)
db - Databaserelation - Relationpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithmgetInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractHDBSCAN<O,PointerDensityHierarchyRepresentationResult>protected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<PointerDensityHierarchyRepresentationResult>Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.