
| Interface | Description |
|---|---|
| ClusteringAlgorithm<C extends Clustering<? extends Model>> |
Interface for Algorithms that are capable to provide a
Clustering as Result. in general, clustering algorithms are supposed to
implement the Algorithm-Interface. |
| GriDBSCAN.Assignment |
Point assignment.
|
| Class | Description |
|---|---|
| AbstractProjectedClustering<R extends Clustering<?>,V extends NumberVector> | |
| AbstractProjectedClustering.Parameterizer |
Parameterization class.
|
| CanopyPreClustering<O> |
Canopy pre-clustering is a simple preprocessing step for clustering.
|
| CanopyPreClustering.Parameterizer<O> |
Parameterization class
|
| ClusteringAlgorithmUtil |
Utility functionality for writing clustering algorithms.
|
| DBSCAN<O> |
Density-Based Clustering of Applications with Noise (DBSCAN), an algorithm to
find density-connected sets in a database.
|
| DBSCAN.Parameterizer<O> |
Parameterization class.
|
| GriDBSCAN<V extends NumberVector> |
Using Grid for Accelerating Density-Based Clustering.
|
| GriDBSCAN.Border |
Border point assignment.
|
| GriDBSCAN.Core |
Core point assignment.
|
| GriDBSCAN.Instance<V extends NumberVector> |
Instance, for a single run.
|
| GriDBSCAN.MultiBorder |
Multiple border point assignment.
|
| GriDBSCAN.Parameterizer<O extends NumberVector> |
Parameterization class.
|
| NaiveMeanShiftClustering<V extends NumberVector> |
Mean-shift based clustering algorithm.
|
| NaiveMeanShiftClustering.Parameterizer<V extends NumberVector> |
Parameterizer.
|
| SNNClustering<O> |
Shared nearest neighbor clustering.
|
| SNNClustering.Parameterizer<O> |
Parameterization class.
|
Clustering algorithms.
Clustering algorithms are supposed to implement theAlgorithm-Interface.
The more specialized interface ClusteringAlgorithm
requires an implementing algorithm to provide a special result class suitable as a partitioning of the database.
More relaxed clustering algorithms are allowed to provide a result that is a fuzzy clustering, does not
partition the database complete or is in any other sense a relaxed clustering result.de.lmu.ifi.dbs.elki.algorithmCopyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.