Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering.em |
Expectation-Maximization clustering algorithm.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization |
Initialization strategies for k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.parallel |
Parallelized implementations of k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality |
Quality measures for k-Means results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain |
Clustering algorithms for uncertain data.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.distance |
Distance-based outlier detection algorithms, such as DBOutlier and kNN.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data
(e.g. compute distributions, distance distributions etc.)
|
de.lmu.ifi.dbs.elki.distance.distancefunction |
Distance functions for use within ELKI.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.geo |
Geographic (earth) distance functions.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.histogram |
Distance functions for one-dimensional histograms.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski |
Minkowski space L_p norms such as the popular Euclidean and Manhattan distances.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic |
Distance from probability theory, mostly divergences such as K-L-divergence, J-divergence.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.set |
Distance functions for binary and set type data.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
Distance functions based on subspaces.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries |
Distance functions designed for time series.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.internal |
Internal evaluation measures for clusterings.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
tutorial.distancefunction |
Classes from the tutorial on implementing distance functions.
|
Modifier and Type | Field and Description |
---|---|
protected NumberVectorDistanceFunction<? super O> |
AbstractNumberVectorDistanceBasedAlgorithm.distanceFunction
Holds the instance of the distance function specified by
DistanceBasedAlgorithm.DISTANCE_FUNCTION_ID . |
protected NumberVectorDistanceFunction<? super O> |
AbstractNumberVectorDistanceBasedAlgorithm.Parameterizer.distanceFunction
Distance function to use.
|
Modifier and Type | Method and Description |
---|---|
NumberVectorDistanceFunction<? super O> |
AbstractNumberVectorDistanceBasedAlgorithm.getDistanceFunction()
Returns the distanceFunction.
|
Constructor and Description |
---|
AbstractNumberVectorDistanceBasedAlgorithm(NumberVectorDistanceFunction<? super O> distanceFunction)
Constructor.
|
DependencyDerivator(NumberVectorDistanceFunction<? super V> distanceFunction,
NumberFormat nf,
PCAFilteredRunner pca,
int sampleSize,
boolean randomsample)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
List<SphericalGaussianModel> |
SphericalGaussianModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df) |
List<DiagonalGaussianModel> |
DiagonalGaussianModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df) |
List<MultivariateGaussianModel> |
MultivariateGaussianModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df) |
List<? extends EMClusterModel<M>> |
EMClusterModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df)
Build the initial models
|
Modifier and Type | Method and Description |
---|---|
void |
KMeansBisecting.setDistanceFunction(NumberVectorDistanceFunction<? super V> distanceFunction) |
void |
KMeans.setDistanceFunction(NumberVectorDistanceFunction<? super V> distanceFunction)
Set the distance function to use.
|
void |
BestOfMultipleKMeans.setDistanceFunction(NumberVectorDistanceFunction<? super V> distanceFunction) |
void |
AbstractKMeans.setDistanceFunction(NumberVectorDistanceFunction<? super V> distanceFunction) |
Constructor and Description |
---|
AbstractKMeans(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization<? super V> initializer)
Constructor.
|
KMeansBatchedLloyd(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization<? super V> initializer,
int blocks,
RandomFactory random)
Constructor.
|
KMeansElkan(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization<? super V> initializer)
Constructor.
|
KMeansHamerly(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization<? super V> initializer)
Constructor.
|
KMeansHybridLloydMacQueen(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization<? super V> initializer)
Constructor.
|
KMeansLloyd(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization<? super V> initializer)
Constructor.
|
KMeansMacQueen(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization<? super V> initializer)
Constructor.
|
KMediansLloyd(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization<? super V> initializer)
Constructor.
|
SingleAssignmentKMeans(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
KMeansInitialization<? super V> initializer)
Constructor.
|
XMeans(NumberVectorDistanceFunction<? super V> distanceFunction,
int k_min,
int k_max,
int maxiter,
KMeans<V,M> innerKMeans,
KMeansInitialization<? super V> initializer,
PredefinedInitialMeans splitInitializer,
KMeansQualityMeasure<V> informationCriterion,
RandomFactory random)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector,O extends NumberVector> |
PredefinedInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<O> factory) |
<T extends V,O extends NumberVector> |
KMeansInitialization.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<O> factory)
Choose initial means
|
<T extends V,O extends NumberVector> |
SampleKMeansInitialization.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<O> factory) |
<T extends NumberVector,V extends NumberVector> |
FarthestSumPointsInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
RandomlyChosenInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
RandomlyGeneratedInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
FirstKInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
KMeansPlusPlusInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
PAMInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
FarthestPointsInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
Modifier and Type | Field and Description |
---|---|
(package private) NumberVectorDistanceFunction<? super V> |
KMeansProcessor.distance
Distance function.
|
private NumberVectorDistanceFunction<? super V> |
KMeansProcessor.Instance.distance
Distance function.
|
Constructor and Description |
---|
Instance(Relation<V> relation,
NumberVectorDistanceFunction<? super V> distance,
WritableIntegerDataStore assignment,
List<? extends NumberVector> means)
Constructor.
|
KMeansProcessor(Relation<V> relation,
NumberVectorDistanceFunction<? super V> distance,
WritableIntegerDataStore assignment,
double[] varsum)
Constructor.
|
ParallelLloydKMeans(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization<? super V> initializer)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector> |
AbstractKMeansQualityMeasure.logLikelihood(Relation<V> relation,
Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering.
|
static <V extends NumberVector> |
AbstractKMeansQualityMeasure.logLikelihoodAlternate(Relation<V> relation,
Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering.
|
<V extends NumberVector> |
WithinClusterVarianceQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
BayesianInformationCriterion.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
BayesianInformationCriterionZhao.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
AkaikeInformationCriterion.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
WithinClusterMeanDistanceQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends O> |
KMeansQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation)
Calculates and returns the quality measure.
|
static <V extends NumberVector> |
AbstractKMeansQualityMeasure.varianceOfCluster(Cluster<? extends MeanModel> cluster,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation)
Variance contribution of a single cluster.
|
Constructor and Description |
---|
CKMeans(NumberVectorDistanceFunction<? super NumberVector> distanceFunction,
int k,
int maxiter,
KMeansInitialization<? super NumberVector> initializer)
Constructor that uses Lloyd's k-means algorithm.
|
Constructor and Description |
---|
ReferenceBasedOutlierDetection(int k,
NumberVectorDistanceFunction<? super NumberVector> distanceFunction,
ReferencePointsHeuristic refp)
Constructor with parameters.
|
Modifier and Type | Field and Description |
---|---|
private NumberVectorDistanceFunction<?> |
ALOCI.Parameterizer.distanceFunction
The distance function
|
private NumberVectorDistanceFunction<?> |
ALOCI.distFunc
Distance function
|
Constructor and Description |
---|
ALOCI(NumberVectorDistanceFunction<?> distanceFunction,
int nmin,
int alpha,
int g,
RandomFactory rnd)
Constructor.
|
Constructor and Description |
---|
HopkinsStatisticClusteringTendency(NumberVectorDistanceFunction<? super NumberVector> distanceFunction,
int samplesize,
RandomFactory random,
int rep,
int k,
double[] minima,
double[] maxima)
Constructor.
|
Modifier and Type | Interface and Description |
---|---|
interface |
WeightedNumberVectorDistanceFunction<V>
Distance functions where each dimension is assigned a weight.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractNumberVectorDistanceFunction
Abstract base class for the most common family of distance functions: defined
on number vectors and returning double values.
|
class |
AbstractNumberVectorNorm
Abstract base class for double-valued number-vector-based distances based on
norms.
|
class |
AbstractSpatialDistanceFunction
Abstract base class for typical distance functions that allow
rectangle-to-rectangle lower bounds.
|
class |
AbstractSpatialNorm
Abstract base class for typical distance functions that allow
rectangle-to-rectangle lower bounds.
|
class |
ArcCosineDistanceFunction
Cosine distance function for feature vectors.
|
class |
BrayCurtisDistanceFunction
Bray-Curtis distance function / Sørensen–Dice coefficient for continuous
spaces.
|
class |
CanberraDistanceFunction
Canberra distance function, a variation of Manhattan distance.
|
class |
ClarkDistanceFunction
Clark distance function for vector spaces.
|
class |
CosineDistanceFunction
Cosine distance function for feature vectors.
|
class |
Kulczynski1DistanceFunction
Kulczynski similarity 1, in distance form.
|
class |
LorentzianDistanceFunction
Lorentzian distance function for vector spaces.
|
class |
MatrixWeightedDistanceFunction
Weighted distance for feature vectors.
|
class |
WeightedCanberraDistanceFunction
Weighted Canberra distance function, a variation of Manhattan distance.
|
Modifier and Type | Class and Description |
---|---|
class |
HistogramIntersectionDistanceFunction
Intersection distance for color histograms.
|
class |
HSBHistogramQuadraticDistanceFunction
Distance function for HSB color histograms based on a quadratic form and
color similarity.
|
class |
RGBHistogramQuadraticDistanceFunction
Distance function for RGB color histograms based on a quadratic form and
color similarity.
|
Modifier and Type | Class and Description |
---|---|
class |
AbsolutePearsonCorrelationDistanceFunction
Absolute Pearson correlation distance function for feature vectors.
|
class |
AbsoluteUncenteredCorrelationDistanceFunction
Absolute uncentered correlation distance function for feature vectors.
|
class |
PearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors.
|
class |
SquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors.
|
class |
SquaredUncenteredCorrelationDistanceFunction
Squared uncentered correlation distance function for feature vectors.
|
class |
UncenteredCorrelationDistanceFunction
Uncentered correlation distance.
|
class |
WeightedPearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors.
|
class |
WeightedSquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
DimensionSelectingLatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form.
|
class |
LatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form.
|
class |
LngLatDistanceFunction
Distance function for 2D vectors in Longitude, Latitude form.
|
Modifier and Type | Class and Description |
---|---|
class |
HistogramMatchDistanceFunction
Distance function based on histogram matching, i.e.
|
class |
KolmogorovSmirnovDistanceFunction
Distance function based on the Kolmogorov-Smirnov goodness of fit test.
|
Modifier and Type | Class and Description |
---|---|
class |
EuclideanDistanceFunction
Euclidean distance for
NumberVector s. |
class |
LPIntegerNormDistanceFunction
LP-Norm for
NumberVector s, optimized version for integer values of p. |
class |
LPNormDistanceFunction
LP-Norm for
NumberVector s. |
class |
ManhattanDistanceFunction
Manhattan distance for
NumberVector s. |
class |
MaximumDistanceFunction
Maximum distance for
NumberVector s. |
class |
MinimumDistanceFunction
Maximum distance for
NumberVector s. |
class |
SquaredEuclideanDistanceFunction
Squared Euclidean distance, optimized for
SparseNumberVector s. |
class |
WeightedEuclideanDistanceFunction
Weighted Euclidean distance for
NumberVector s. |
class |
WeightedLPNormDistanceFunction
Weighted version of the Minkowski L_p norm distance for
NumberVector . |
class |
WeightedManhattanDistanceFunction
Weighted version of the Minkowski L_p metrics distance function for
NumberVector s. |
class |
WeightedMaximumDistanceFunction
Weighted version of the Minkowski L_p metrics distance function for
NumberVector s. |
class |
WeightedSquaredEuclideanDistanceFunction
Squared Euclidean distance for
NumberVector s. |
Modifier and Type | Class and Description |
---|---|
class |
ChiSquaredDistanceFunction
Chi-Squared distance function, symmetric version.
|
class |
HellingerDistanceFunction
Hellinger kernel / Hellinger distance are used with SIFT vectors, and also
known as Bhattacharyya distance / coefficient.
|
class |
JeffreyDivergenceDistanceFunction
Jeffrey Divergence Distance for
NumberVector s. |
class |
JensenShannonDivergenceDistanceFunction
Jensen-Shannon Divergence is essentially the same as Jeffrey divergence, only
scaled by half.
|
class |
KullbackLeiblerDivergenceAsymmetricDistanceFunction
Kullback-Leibler (asymmetric!)
|
class |
KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction
Kullback-Leibler (asymmetric!)
|
class |
SqrtJensenShannonDivergenceDistanceFunction
The square root of Jensen-Shannon divergence is metric.
|
Modifier and Type | Class and Description |
---|---|
class |
HammingDistanceFunction
Computes the Hamming distance of arbitrary vectors - i.e. counting, on how
many places they differ.
|
class |
JaccardSimilarityDistanceFunction<O extends FeatureVector<?>>
A flexible extension of Jaccard similarity to non-binary vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
OnedimensionalDistanceFunction
Distance function that computes the distance between feature vectors as the
absolute difference of their values in a specified dimension only.
|
class |
SubspaceEuclideanDistanceFunction
Euclidean distance function between
NumberVector s only in specified
dimensions. |
class |
SubspaceLPNormDistanceFunction
LP-Norm distance function between
NumberVector s only in specified
dimensions. |
class |
SubspaceManhattanDistanceFunction
Manhattan distance function between
NumberVector s only in specified
dimensions. |
class |
SubspaceMaximumDistanceFunction
Maximum distance function between
NumberVector s only in specified
dimensions. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractEditDistanceFunction
Edit Distance for FeatureVectors.
|
class |
DerivativeDTWDistanceFunction
Derivative Dynamic Time Warping distance for numerical vectors.
|
class |
DTWDistanceFunction
Dynamic Time Warping distance (DTW) for numerical vectors.
|
class |
EDRDistanceFunction
Edit Distance on Real Sequence distance for numerical vectors.
|
class |
ERPDistanceFunction
Edit Distance With Real Penalty distance for numerical vectors.
|
class |
LCSSDistanceFunction
Longest Common Subsequence distance for numerical vectors.
|
Modifier and Type | Field and Description |
---|---|
private NumberVectorDistanceFunction<?> |
EvaluateSimplifiedSilhouette.distance
Distance function to use.
|
private NumberVectorDistanceFunction<?> |
EvaluateSimplifiedSilhouette.Parameterizer.distance
Distance function to use.
|
private NumberVectorDistanceFunction<?> |
EvaluateDaviesBouldin.Parameterizer.distance
Distance function to use.
|
private NumberVectorDistanceFunction<?> |
EvaluateSquaredErrors.distance
Distance function to use.
|
private NumberVectorDistanceFunction<?> |
EvaluateSquaredErrors.Parameterizer.distance
Distance function to use.
|
private NumberVectorDistanceFunction<?> |
EvaluatePBMIndex.Parameterizer.distance
Distance function to use.
|
private NumberVectorDistanceFunction<?> |
EvaluateDaviesBouldin.distanceFunction
Distance function to use.
|
private NumberVectorDistanceFunction<?> |
EvaluatePBMIndex.distanceFunction
Distance function to use.
|
Constructor and Description |
---|
EvaluateDaviesBouldin(NumberVectorDistanceFunction<?> distance,
NoiseHandling noiseOpt)
Constructor.
|
EvaluatePBMIndex(NumberVectorDistanceFunction<?> distance,
NoiseHandling noiseOpt)
Constructor.
|
EvaluateSimplifiedSilhouette(NumberVectorDistanceFunction<?> distance,
NoiseHandling noiseOpt,
boolean penalize)
Constructor.
|
EvaluateSquaredErrors(NumberVectorDistanceFunction<?> distance,
NoiseHandling noiseOption)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected NumberVectorDistanceFunction<? super V> |
SameSizeKMeansAlgorithm.Parameterizer.distanceFunction
Distance function
|
Modifier and Type | Method and Description |
---|---|
protected void |
SameSizeKMeansAlgorithm.updateDistances(Relation<V> relation,
List<Vector> means,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
NumberVectorDistanceFunction<? super V> df)
Compute the distances of each object to all means.
|
Constructor and Description |
---|
SameSizeKMeansAlgorithm(NumberVectorDistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMeansInitialization<? super V> initializer)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
MultiLPNorm
Tutorial example for ELKI.
|
class |
TutorialDistanceFunction
Tutorial example for ELKI.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.