
public class WithinClusterVarianceQualityMeasure extends AbstractKMeansQualityMeasure<NumberVector>
| Constructor and Description |
|---|
WithinClusterVarianceQualityMeasure() |
| Modifier and Type | Method and Description |
|---|---|
boolean |
ascending()
Use ascending or descending ordering.
|
boolean |
isBetter(double currentCost,
double bestCost)
Compare two scores.
|
<V extends NumberVector> |
quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation)
Calculates and returns the quality measure.
|
logLikelihood, logLikelihoodAlternate, numberOfFreeParameters, numPoints, varianceOfClusterpublic <V extends NumberVector> double quality(Clustering<? extends MeanModel> clustering, NumberVectorDistanceFunction<? super V> distanceFunction, Relation<V> relation)
KMeansQualityMeasureV - Actual vector type (could be a subtype of O!)clustering - Clustering to analyzedistanceFunction - Distance function to use (usually Euclidean or
squared Euclidean!)relation - Relation for accessing objectspublic boolean ascending()
KMeansQualityMeasuretrue when larger scores are better.public boolean isBetter(double currentCost,
double bestCost)
KMeansQualityMeasurecurrentCost - New (candiate) cost/scorebestCost - Existing best cost/score (may be NaN)true when the new score is better, or the old score is
NaN.Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.