Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.benchmark |
Benchmarking pseudo algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.classification |
Classification algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation |
Affinity Propagation (AP) clustering.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering |
Biclustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.em |
Expectation-Maximization clustering algorithm.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical |
Hierarchical agglomerative clustering (HAC).
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction |
Extraction of partitional clusterings from hierarchical results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization |
Initialization strategies for k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.parallel |
Parallelized implementations of k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.meta |
Meta clustering algorithms, that get their result from other clusterings or external sources.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.optics |
OPTICS family of clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in evaluation.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain |
Clustering algorithms for uncertain data.
|
de.lmu.ifi.dbs.elki.algorithm.itemsetmining |
Algorithms for frequent itemset mining such as APRIORI.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.anglebased |
Angle-based outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.clustering |
Clustering based outlier detection.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.distance |
Distance-based outlier detection algorithms, such as DBOutlier and kNN.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.distance.parallel |
Parallel implementations of distance-based outlier detectors.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof.parallel |
Parallelized variants of LOF.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.meta |
Meta outlier detection algorithms: external scores, score rescaling.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
Spatial outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood |
Spatial outlier neighborhood classes
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted |
Weighted Neighborhood definitions.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.subspace |
Subspace outlier detection methods.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.trivial |
Trivial outlier detection algorithms: no outliers, all outliers, label outliers.
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data
(e.g. compute distributions, distance distributions etc.)
|
de.lmu.ifi.dbs.elki.application.jsmap |
JavaScript based map client - server architecture.
|
de.lmu.ifi.dbs.elki.database |
ELKI database layer - loading, storing, indexing and accessing data
|
de.lmu.ifi.dbs.elki.evaluation.clustering.internal |
Internal evaluation measures for clusterings.
|
de.lmu.ifi.dbs.elki.evaluation.histogram |
Functionality for the evaluation of algorithms using histograms.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.result.textwriter |
Text serialization (CSV, Gnuplot, Console, ...)
|
de.lmu.ifi.dbs.elki.utilities |
Utility and helper classes - commonly used data structures, output formatting, exceptions, ...
|
de.lmu.ifi.dbs.elki.visualization |
Visualization package of ELKI.
|
de.lmu.ifi.dbs.elki.workflow |
Work flow packages, e.g. following the usual KDD model, closely related to CRISP-DM
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
tutorial.outlier |
Modifier and Type | Method and Description |
---|---|
R |
AbstractAlgorithm.run(Database database) |
Result |
NullAlgorithm.run(Database database) |
Result |
Algorithm.run(Database database)
Runs the algorithm.
|
CollectionResult<MaterializeDistances.DistanceEntry> |
MaterializeDistances.run(Database database,
Relation<O> relation)
Iterates over all points in the database.
|
Result |
DummyAlgorithm.run(Database database,
Relation<O> relation)
Run the algorithm.
|
KNNDistancesSampler.KNNDistanceOrderResult |
KNNDistancesSampler.run(Database database,
Relation<O> relation)
Provides an order of the kNN-distances for all objects within the specified
database.
|
CorrelationAnalysisSolution<V> |
DependencyDerivator.run(Database database,
Relation<V> relation)
Computes quantitatively linear dependencies among the attributes of the
given database based on a linear correlation PCA.
|
Modifier and Type | Method and Description |
---|---|
Result |
RangeQueryBenchmarkAlgorithm.run(Database database,
Relation<O> relation)
Run the algorithm, with a separate query set.
|
Result |
KNNBenchmarkAlgorithm.run(Database database,
Relation<O> relation)
Run the algorithm.
|
Result |
ValidateApproximativeKNNIndex.run(Database database,
Relation<O> relation)
Run the algorithm.
|
Result |
RangeQueryBenchmarkAlgorithm.run(Database database,
Relation<O> relation,
Relation<NumberVector> radrel)
Run the algorithm, with separate radius relation
|
Modifier and Type | Method and Description |
---|---|
void |
Classifier.buildClassifier(Database database,
Relation<? extends ClassLabel> classLabels)
Performs the training.
|
void |
KNNClassifier.buildClassifier(Database database,
Relation<? extends ClassLabel> labels) |
void |
PriorProbabilityClassifier.buildClassifier(Database database,
Relation<? extends ClassLabel> labelrep)
Learns the prior probability for all classes.
|
Result |
KNNClassifier.run(Database database)
Deprecated.
|
R |
AbstractClassifier.run(Database database)
Deprecated.
|
Modifier and Type | Method and Description |
---|---|
protected DistanceQuery<V> |
AbstractProjectedClustering.getDistanceQuery(Database database)
Returns the distance function.
|
C |
ClusteringAlgorithm.run(Database database) |
Clustering<Model> |
SNNClustering.run(Database database,
Relation<O> relation)
Perform SNN clustering
|
Clustering<PrototypeModel<O>> |
CanopyPreClustering.run(Database database,
Relation<O> relation)
Run the algorithm
|
Clustering<MeanModel> |
NaiveMeanShiftClustering.run(Database database,
Relation<V> relation)
Run the mean-shift clustering algorithm.
|
Modifier and Type | Method and Description |
---|---|
double[][] |
DistanceBasedInitializationWithMedian.getSimilarityMatrix(Database db,
Relation<O> relation,
ArrayDBIDs ids) |
double[][] |
AffinityPropagationInitialization.getSimilarityMatrix(Database db,
Relation<O> relation,
ArrayDBIDs ids)
Compute the initial similarity matrix.
|
double[][] |
SimilarityBasedInitializationWithMedian.getSimilarityMatrix(Database db,
Relation<O> relation,
ArrayDBIDs ids) |
Clustering<MedoidModel> |
AffinityPropagationClusteringAlgorithm.run(Database db,
Relation<O> relation)
Perform affinity propagation clustering.
|
Modifier and Type | Field and Description |
---|---|
private Database |
AbstractBiclustering.database
Keeps the currently set database.
|
Modifier and Type | Method and Description |
---|---|
Database |
AbstractBiclustering.getDatabase()
Getter for database.
|
Modifier and Type | Method and Description |
---|---|
private Database |
CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation,
CASHInterval interval)
Builds a database for the derivator consisting of the ids in the specified
interval.
|
private Database |
CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation,
DBIDs ids)
Builds a database for the derivator consisting of the ids in the specified
interval.
|
Modifier and Type | Method and Description |
---|---|
private Relation<ParameterizationFunction> |
CASH.preprocess(Database db,
Relation<V> vrel)
Preprocess the dataset, precomputing the parameterization functions.
|
Clustering<Model> |
LMCLUS.run(Database database,
Relation<NumberVector> relation)
The main LMCLUS (Linear manifold clustering algorithm) is processed in this
method.
|
Clustering<Model> |
CASH.run(Database database,
Relation<V> vrel)
Run CASH on the relation.
|
Clustering<DimensionModel> |
COPAC.run(Database database,
Relation<V> relation)
Run the COPAC algorithm.
|
Clustering<Model> |
ORCLUS.run(Database database,
Relation<V> relation)
Performs the ORCLUS algorithm on the given database.
|
Clustering<CorrelationModel<V>> |
ERiC.run(Database database,
Relation<V> relation)
Performs the ERiC algorithm on the given database.
|
CorrelationClusterOrder |
HiCO.run(Database db,
Relation<V> relation) |
Constructor and Description |
---|
Instance(Database db,
Relation<V> relation)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
List<SphericalGaussianModel> |
SphericalGaussianModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df) |
List<DiagonalGaussianModel> |
DiagonalGaussianModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df) |
List<MultivariateGaussianModel> |
MultivariateGaussianModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df) |
List<? extends EMClusterModel<M>> |
EMClusterModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df)
Build the initial models
|
Clustering<M> |
EM.run(Database database,
Relation<V> relation)
Performs the EM clustering algorithm on the given database.
|
Modifier and Type | Method and Description |
---|---|
ERiCNeighborPredicate.Instance |
ERiCNeighborPredicate.instantiate(Database database,
Relation<V> relation)
Full instantiation interface.
|
COPACNeighborPredicate.Instance |
COPACNeighborPredicate.instantiate(Database database,
Relation<V> relation)
Full instantiation method.
|
<T> CorePredicate.Instance<T> |
CorePredicate.instantiate(Database database,
SimpleTypeInformation<?> type)
Instantiate for a database.
|
<T> CorePredicate.Instance<T> |
FourCCorePredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
<T> NeighborPredicate.Instance<T> |
NeighborPredicate.instantiate(Database database,
SimpleTypeInformation<?> type)
Instantiate for a database.
|
<T> NeighborPredicate.Instance<T> |
ERiCNeighborPredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
<T> NeighborPredicate.Instance<T> |
FourCNeighborPredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
<T> CorePredicate.Instance<T> |
PreDeConCorePredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
<T> NeighborPredicate.Instance<T> |
EpsilonNeighborPredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
<T> NeighborPredicate.Instance<T> |
PreDeConNeighborPredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
<T> CorePredicate.Instance<T> |
MinPtsCorePredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
<T> NeighborPredicate.Instance<T> |
COPACNeighborPredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
Clustering<Model> |
GeneralizedDBSCAN.run(Database database) |
Clustering<Model> |
LSDBC.run(Database database,
Relation<O> relation)
Run the LSDBC algorithm
|
Modifier and Type | Method and Description |
---|---|
PointerHierarchyRepresentationResult |
HierarchicalClusteringAlgorithm.run(Database db) |
PointerHierarchyRepresentationResult |
SLINK.run(Database database,
Relation<O> relation)
Performs the SLINK algorithm on the given database.
|
PointerHierarchyRepresentationResult |
AnderbergHierarchicalClustering.run(Database db,
Relation<O> relation)
Run the algorithm
|
PointerHierarchyRepresentationResult |
AGNES.run(Database db,
Relation<O> relation)
Run the algorithm
|
PointerDensityHierarchyRepresentationResult |
SLINKHDBSCANLinearMemory.run(Database db,
Relation<O> relation)
Run the algorithm
|
PointerDensityHierarchyRepresentationResult |
HDBSCANLinearMemory.run(Database db,
Relation<O> relation)
Run the algorithm
|
Modifier and Type | Method and Description |
---|---|
Clustering<DendrogramModel> |
ExtractFlatClusteringFromHierarchy.run(Database database) |
Clustering<DendrogramModel> |
HDBSCANHierarchyExtraction.run(Database database) |
Clustering<DendrogramModel> |
SimplifiedHierarchyExtraction.run(Database database) |
Modifier and Type | Method and Description |
---|---|
Clustering<KMeansModel> |
KMeansBatchedLloyd.run(Database database,
Relation<V> relation) |
Clustering<MedoidModel> |
KMedoidsPAM.run(Database database,
Relation<V> relation)
Run k-medoids
|
Clustering<M> |
KMeansBisecting.run(Database database,
Relation<V> relation) |
Clustering<M> |
KMeans.run(Database database,
Relation<V> rel)
Run the clustering algorithm.
|
Clustering<KMeansModel> |
SingleAssignmentKMeans.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansMacQueen.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansHamerly.run(Database database,
Relation<V> relation) |
Clustering<MedoidModel> |
KMedoidsEM.run(Database database,
Relation<V> relation)
Run k-medoids
|
Clustering<M> |
XMeans.run(Database database,
Relation<V> relation)
Run the algorithm on a database and relation.
|
Clustering<KMeansModel> |
KMeansHybridLloydMacQueen.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansElkan.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel> |
KMeansLloyd.run(Database database,
Relation<V> relation) |
Clustering<M> |
BestOfMultipleKMeans.run(Database database,
Relation<V> relation) |
Clustering<MeanModel> |
KMediansLloyd.run(Database database,
Relation<V> relation) |
Clustering<MedoidModel> |
CLARA.run(Database database,
Relation<V> relation) |
protected List<Cluster<M>> |
XMeans.splitCluster(Cluster<M> parentCluster,
Database database,
Relation<V> relation)
Conditionally splits the clusters based on the information criterion.
|
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector,O extends NumberVector> |
PredefinedInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<O> factory) |
<T extends V,O extends NumberVector> |
KMeansInitialization.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<O> factory)
Choose initial means
|
<T extends V,O extends NumberVector> |
SampleKMeansInitialization.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<O> factory) |
<T extends NumberVector,V extends NumberVector> |
FarthestSumPointsInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
RandomlyChosenInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
RandomlyGeneratedInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
FirstKInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
KMeansPlusPlusInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
PAMInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
<T extends NumberVector,V extends NumberVector> |
FarthestPointsInitialMeans.chooseInitialMeans(Database database,
Relation<T> relation,
int k,
NumberVectorDistanceFunction<? super T> distanceFunction,
NumberVector.Factory<V> factory) |
Modifier and Type | Method and Description |
---|---|
Clustering<KMeansModel> |
ParallelLloydKMeans.run(Database database,
Relation<V> relation) |
Modifier and Type | Method and Description |
---|---|
private void |
ExternalClustering.attachToRelation(Database database,
Relation<?> r,
gnu.trove.list.array.TIntArrayList assignment,
ArrayList<String> name)
Build a clustering from the file result.
|
Clustering<? extends Model> |
ExternalClustering.run(Database database)
Run the algorithm.
|
Modifier and Type | Method and Description |
---|---|
ClusterOrder |
OPTICSTypeAlgorithm.run(Database database) |
Clustering<OPTICSModel> |
OPTICSXi.run(Database database,
Relation<?> relation) |
ClusterOrder |
DeLiClu.run(Database database,
Relation<NV> relation) |
abstract ClusterOrder |
AbstractOPTICS.run(Database db,
Relation<O> relation)
Run OPTICS on the database.
|
ClusterOrder |
OPTICSList.run(Database db,
Relation<O> relation) |
abstract ClusterOrder |
GeneralizedOPTICS.run(Database db,
Relation<O> relation)
Run OPTICS on the database.
|
ClusterOrder |
OPTICSHeap.run(Database db,
Relation<O> relation) |
ClusterOrder |
FastOPTICS.run(Database db,
Relation<V> rel)
Run the algorithm.
|
Constructor and Description |
---|
Instance(Database db,
Relation<O> relation)
Constructor for a single data set.
|
Instance(Database db,
Relation<O> relation)
Constructor for a single data set.
|
Instance(Database db,
Relation<O> relation)
Constructor for a single data set.
|
Modifier and Type | Method and Description |
---|---|
Clustering<SubspaceModel> |
DOC.run(Database database,
Relation<V> relation)
Performs the DOC or FastDOC (as configured) algorithm on the given
Database.
|
Clustering<SubspaceModel> |
DiSH.run(Database db,
Relation<V> relation)
Performs the DiSH algorithm on the given database.
|
ClusterOrder |
HiSC.run(Database db,
Relation<V> relation) |
Clustering<SubspaceModel> |
PROCLUS.run(Database database,
Relation<V> relation)
Performs the PROCLUS algorithm on the given database.
|
Clustering<SubspaceModel> |
P3C.run(Database database,
Relation<V> relation)
Performs the P3C algorithm on the given Database.
|
private Cluster<SubspaceModel> |
DOC.runDOC(Database database,
Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r,
int minClusterSize)
Performs a single run of DOC, finding a single cluster.
|
private Cluster<SubspaceModel> |
DOC.runFastDOC(Database database,
Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r)
Performs a single run of FastDOC, finding a single cluster.
|
Constructor and Description |
---|
Instance(Database db,
Relation<V> relation)
Constructor.
|
Instance(Database db,
Relation<V> relation)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
ByLabelHierarchicalClustering.run(Database database) |
Clustering<Model> |
ByLabelClustering.run(Database database) |
Clustering<Model> |
ByLabelOrAllInOneClustering.run(Database database) |
Modifier and Type | Method and Description |
---|---|
<T> NeighborPredicate.Instance<T> |
FDBSCANNeighborPredicate.instantiate(Database database,
SimpleTypeInformation<?> type) |
C |
CenterOfMassMetaClustering.run(Database database,
Relation<? extends UncertainObject> relation)
This run method will do the wrapping.
|
Clustering<?> |
RepresentativeUncertainClustering.run(Database database,
Relation<? extends UncertainObject> relation)
This run method will do the wrapping.
|
Clustering<?> |
UKMeans.run(Database database,
Relation<DiscreteUncertainObject> relation)
Run the clustering.
|
Modifier and Type | Method and Description |
---|---|
FrequentItemsetsResult |
FPGrowth.run(Database db,
Relation<BitVector> relation)
Run the FP-Growth algorithm
|
FrequentItemsetsResult |
Eclat.run(Database db,
Relation<BitVector> relation)
Run the Eclat algorithm
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
OutlierAlgorithm.run(Database database) |
OutlierResult |
DWOF.run(Database database,
Relation<O> relation)
Performs the Generalized DWOF_SCORE algorithm on the given database by
calling all the other methods in the proper order.
|
OutlierResult |
OPTICSOF.run(Database database,
Relation<O> relation)
Perform OPTICS-based outlier detection.
|
OutlierResult |
SimpleCOP.run(Database database,
Relation<V> data) |
Modifier and Type | Method and Description |
---|---|
OutlierResult |
FastABOD.run(Database db,
Relation<V> relation)
Run Fast-ABOD on the data set.
|
OutlierResult |
LBABOD.run(Database db,
Relation<V> relation)
Run LB-ABOD on the data set.
|
OutlierResult |
ABOD.run(Database db,
Relation<V> relation)
Run ABOD on the data set.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
SilhouetteOutlierDetection.run(Database database) |
OutlierResult |
KMeansOutlierDetection.run(Database database,
Relation<O> relation)
Run the outlier detection algorithm.
|
OutlierResult |
EMOutlier.run(Database database,
Relation<V> relation)
Runs the algorithm in the timed evaluation part.
|
Modifier and Type | Method and Description |
---|---|
protected DoubleDataStore |
DBOutlierScore.computeOutlierScores(Database database,
Relation<O> relation,
double d) |
protected DoubleDataStore |
DBOutlierDetection.computeOutlierScores(Database database,
Relation<O> relation,
double neighborhoodSize) |
protected abstract DoubleDataStore |
AbstractDBOutlier.computeOutlierScores(Database database,
Relation<O> relation,
double d)
computes an outlier score for each object of the database.
|
OutlierResult |
ReferenceBasedOutlierDetection.run(Database database,
Relation<? extends NumberVector> relation)
Run the algorithm on the given relation.
|
OutlierResult |
ODIN.run(Database database,
Relation<O> relation)
Run the ODIN algorithm
|
OutlierResult |
KNNOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
AbstractDBOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
HilOut.run(Database database,
Relation<O> relation) |
OutlierResult |
KNNWeightOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
ParallelKNNWeightOutlier.run(Database database,
Relation<O> relation)
Run the parallel kNN weight outlier detector.
|
OutlierResult |
ParallelKNNOutlier.run(Database database,
Relation<O> relation) |
Modifier and Type | Method and Description |
---|---|
private Pair<Pair<KNNQuery<O>,KNNQuery<O>>,Pair<RKNNQuery<O>,RKNNQuery<O>>> |
OnlineLOF.getKNNAndRkNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN and rkNN queries for the algorithm.
|
private Pair<KNNQuery<O>,KNNQuery<O>> |
FlexibleLOF.getKNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm.
|
protected Pair<KNNQuery<O>,KNNQuery<O>> |
LoOP.getKNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm.
|
OutlierResult |
FlexibleLOF.run(Database database,
Relation<O> relation)
Performs the Generalized LOF algorithm on the given database by calling
FlexibleLOF.doRunInTime(de.lmu.ifi.dbs.elki.database.ids.DBIDs, de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery<O>, de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery<O>, de.lmu.ifi.dbs.elki.logging.progress.StepProgress) . |
OutlierResult |
OnlineLOF.run(Database database,
Relation<O> relation)
Performs the Generalized LOF_SCORE algorithm on the given database by
calling
#doRunInTime(Database) and adds a OnlineLOF.LOFKNNListener to
the preprocessors. |
OutlierResult |
LOCI.run(Database database,
Relation<O> relation)
Run the algorithm
|
OutlierResult |
LDF.run(Database database,
Relation<O> relation)
Run the naive kernel density LOF algorithm.
|
OutlierResult |
KDEOS.run(Database database,
Relation<O> rel)
Run the KDEOS outlier detection algorithm.
|
OutlierResult |
SimplifiedLOF.run(Database database,
Relation<O> relation)
Run the Simple LOF algorithm.
|
OutlierResult |
LoOP.run(Database database,
Relation<O> relation)
Performs the LoOP algorithm on the given database.
|
OutlierResult |
INFLO.run(Database database,
Relation<O> relation)
Run the algorithm
|
OutlierResult |
COF.run(Database database,
Relation<O> relation)
Runs the COF algorithm on the given database.
|
OutlierResult |
ALOCI.run(Database database,
Relation<O> relation) |
OutlierResult |
LOF.run(Database database,
Relation<O> relation)
Runs the LOF algorithm on the given database.
|
OutlierResult |
LDOF.run(Database database,
Relation<O> relation)
Run the algorithm
|
OutlierResult |
SimpleKernelDensityLOF.run(Database database,
Relation<O> relation)
Run the naive kernel density LOF algorithm.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
ParallelLOF.run(Database database,
Relation<O> relation) |
OutlierResult |
ParallelSimplifiedLOF.run(Database database,
Relation<O> relation) |
Modifier and Type | Method and Description |
---|---|
OutlierResult |
SimpleOutlierEnsemble.run(Database database) |
OutlierResult |
RescaleMetaOutlierAlgorithm.run(Database database) |
OutlierResult |
ExternalDoubleOutlierScore.run(Database database,
Relation<?> relation)
Run the algorithm.
|
OutlierResult |
FeatureBagging.run(Database database,
Relation<NumberVector> relation)
Run the algorithm on a data set.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
CTLuMoranScatterplotOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
TrimmedMeanApproach.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Run the algorithm.
|
OutlierResult |
CTLuMedianAlgorithm.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
CTLuZTestOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
CTLuScatterplotOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector> relation)
Main method.
|
OutlierResult |
SOF.run(Database database,
Relation<N> spatial,
Relation<O> relation)
The main run method
|
OutlierResult |
CTLuMedianMultipleAttributes.run(Database database,
Relation<N> spatial,
Relation<O> attributes)
Run the algorithm
|
OutlierResult |
SLOM.run(Database database,
Relation<N> spatial,
Relation<O> relation) |
OutlierResult |
CTLuMeanMultipleAttributes.run(Database database,
Relation<N> spatial,
Relation<O> attributes)
Run the algorithm
|
OutlierResult |
CTLuGLSBackwardSearchAlgorithm.run(Database database,
Relation<V> relationx,
Relation<? extends NumberVector> relationy)
Run the algorithm
|
Modifier and Type | Method and Description |
---|---|
private DataStore<DBIDs> |
ExtendedNeighborhood.Factory.extendNeighborhood(Database database,
Relation<? extends O> relation)
Method to load the external neighbors.
|
NeighborSetPredicate |
ExternalNeighborhood.Factory.instantiate(Database database,
Relation<?> relation) |
NeighborSetPredicate |
NeighborSetPredicate.Factory.instantiate(Database database,
Relation<? extends O> relation)
Instantiation method.
|
NeighborSetPredicate |
ExtendedNeighborhood.Factory.instantiate(Database database,
Relation<? extends O> relation) |
NeighborSetPredicate |
PrecomputedKNearestNeighborNeighborhood.Factory.instantiate(Database database,
Relation<? extends O> relation) |
private DataStore<DBIDs> |
ExternalNeighborhood.Factory.loadNeighbors(Database database,
Relation<?> relation)
Method to load the external neighbors.
|
Modifier and Type | Method and Description |
---|---|
LinearWeightedExtendedNeighborhood |
LinearWeightedExtendedNeighborhood.Factory.instantiate(Database database,
Relation<? extends O> relation) |
UnweightedNeighborhoodAdapter |
UnweightedNeighborhoodAdapter.Factory.instantiate(Database database,
Relation<? extends O> relation) |
WeightedNeighborSetPredicate |
WeightedNeighborSetPredicate.Factory.instantiate(Database database,
Relation<? extends O> relation)
Instantiation method.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
OutRankS1.run(Database database) |
OutlierResult |
AggarwalYuEvolutionary.run(Database database,
Relation<V> relation)
Performs the evolutionary algorithm on the given database.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
ByLabelOutlier.run(Database database) |
OutlierResult |
TrivialGeneratedOutlier.run(Database database) |
Modifier and Type | Method and Description |
---|---|
HistogramResult<DoubleVector> |
DistanceStatisticsWithClasses.run(Database database) |
HistogramResult<DoubleVector> |
EvaluateRankingQuality.run(Database database) |
Result |
AddSingleScale.run(Database database) |
Result |
HopkinsStatisticClusteringTendency.run(Database database,
Relation<NumberVector> relation)
Runs the algorithm in the timed evaluation part.
|
Result |
EstimateIntrinsicDimensionality.run(Database database,
Relation<O> relation) |
HistogramResult<DoubleVector> |
RankingQualityHistogram.run(Database database,
Relation<O> relation)
Process a database
|
CollectionResult<DoubleVector> |
AveragePrecisionAtK.run(Database database,
Relation<O> relation,
Relation<?> lrelation)
Run the algorithm
|
EvaluateRetrievalPerformance.RetrievalPerformanceResult |
EvaluateRetrievalPerformance.run(Database database,
Relation<O> relation,
Relation<?> lrelation)
Run the algorithm
|
Modifier and Type | Field and Description |
---|---|
private Database |
JSONWebServer.db
The database we use for obtaining object bundles.
|
Modifier and Type | Interface and Description |
---|---|
interface |
UpdatableDatabase
Database API with updates.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDatabase
Abstract base class for database API implementations.
|
class |
HashmapDatabase
Database storing data using hashtable storage, and thus allowing additional
and removal of objects.
|
class |
ProxyDatabase
A proxy database to use e.g. for projections and partitions.
|
class |
StaticArrayDatabase
This database class uses array-based storage and thus does not allow for
dynamic insert, delete and update operations.
|
Modifier and Type | Method and Description |
---|---|
protected abstract Database |
AbstractDatabase.Parameterizer.makeInstance() |
Modifier and Type | Method and Description |
---|---|
static <O> DistanceQuery<O> |
QueryUtil.getDistanceQuery(Database database,
DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a distance query for a given distance function, automatically choosing
a relation.
|
static <O> KNNQuery<O> |
QueryUtil.getKNNQuery(Database database,
DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a KNN query object for the given distance function.
|
static <O> RangeQuery<O> |
QueryUtil.getRangeQuery(Database database,
DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a range query object for the given distance function for radius-based
neighbor search.
|
static <O> SimilarityQuery<O> |
QueryUtil.getSimilarityQuery(Database database,
SimilarityFunction<? super O> similarityFunction,
Object... hints)
Get a similarity query, automatically choosing a relation.
|
Constructor and Description |
---|
ProxyDatabase(DBIDs ids,
Database database)
Constructor, proxying all relations of an existing database.
|
Modifier and Type | Method and Description |
---|---|
double |
EvaluateSimplifiedSilhouette.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateVarianceRatioCriteria.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateConcordantPairs.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateDaviesBouldin.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateSquaredErrors.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluatePBMIndex.evaluateClustering(Database db,
Relation<? extends NumberVector> rel,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateCIndex.evaluateClustering(Database db,
Relation<? extends O> rel,
DistanceQuery<O> dq,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateSilhouette.evaluateClustering(Database db,
Relation<O> rel,
DistanceQuery<O> dq,
Clustering<?> c)
Evaluate a single clustering.
|
Modifier and Type | Method and Description |
---|---|
HistogramResult<DoubleVector> |
ComputeOutlierHistogram.evaluateOutlierResult(Database database,
OutlierResult or)
Evaluate a single outlier result as histogram.
|
Modifier and Type | Method and Description |
---|---|
static Database |
ResultUtil.findDatabase(ResultHierarchy hier)
Find the first database result in the tree.
|
static Database |
ResultUtil.findDatabase(ResultHierarchy hier,
Result baseResult)
Find the first database result in the tree.
|
Modifier and Type | Method and Description |
---|---|
static void |
ResultUtil.ensureClusteringResult(Database db,
Result result)
Ensure that the result contains at least one Clustering.
|
static SelectionResult |
ResultUtil.ensureSelectionResult(Database db)
Ensure that there also is a selection container object.
|
private void |
KMLOutputHandler.writeClusteringResult(XMLStreamWriter xmlw,
Clustering<Model> clustering,
Database database) |
private void |
KMLOutputHandler.writeOutlierResult(XMLStreamWriter xmlw,
OutlierResult outlierResult,
Database database) |
Modifier and Type | Method and Description |
---|---|
void |
TextWriter.output(Database db,
Result r,
StreamFactory streamOpener,
Pattern filter)
Stream output.
|
private void |
TextWriter.printObject(TextWriterStream out,
Database db,
DBIDRef objID,
List<Relation<?>> ra) |
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Clustering<Model> clustering,
Cluster<Model> clus,
List<Relation<?>> ra,
NamingScheme naming) |
private void |
TextWriter.writeOrderingResult(Database db,
StreamFactory streamOpener,
OrderingResult or,
List<Relation<?>> ra) |
Modifier and Type | Method and Description |
---|---|
static SortedSet<ClassLabel> |
DatabaseUtil.getClassLabels(Database database)
Retrieves all class labels within the database.
|
static ArrayModifiableDBIDs |
DatabaseUtil.getObjectsByLabelMatch(Database database,
Pattern name_pattern)
Find object by matching their labels.
|
static Relation<String> |
DatabaseUtil.guessLabelRepresentation(Database database)
Guess a potentially label-like representation, preferring class labels.
|
static Relation<String> |
DatabaseUtil.guessObjectLabelRepresentation(Database database)
Guess a potentially object label-like representation.
|
static <O> KNNQuery<O> |
DatabaseUtil.precomputedKNNQuery(Database database,
Relation<O> relation,
DistanceFunction<? super O> distf,
int k)
Get (or create) a precomputed kNN query for the database.
|
static <O> KNNQuery<O> |
DatabaseUtil.precomputedKNNQuery(Database database,
Relation<O> relation,
DistanceQuery<O> dq,
int k)
Get (or create) a precomputed kNN query for the database.
|
Modifier and Type | Method and Description |
---|---|
static String |
VisualizerParameterizer.getTitle(Database db,
Result result)
Try to automatically generate a title for this.
|
Modifier and Type | Field and Description |
---|---|
private Database |
InputStep.database
Holds the database to have the algorithms run with.
|
protected Database |
InputStep.Parameterizer.database
Holds the database to have the algorithms run on.
|
Modifier and Type | Method and Description |
---|---|
Database |
InputStep.getDatabase()
Get the database to use.
|
Modifier and Type | Method and Description |
---|---|
Result |
AlgorithmStep.runAlgorithms(Database database)
Run algorithms.
|
void |
EvaluationStep.runEvaluators(ResultHierarchy hier,
Database db) |
void |
OutputStep.runResultHandlers(ResultHierarchy hier,
Database db)
Run the result handlers.
|
Constructor and Description |
---|
InputStep(Database database)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
PointerHierarchyRepresentationResult |
NaiveAgglomerativeHierarchicalClustering4.run(Database db,
Relation<O> relation)
Run the algorithm
|
Result |
NaiveAgglomerativeHierarchicalClustering3.run(Database db,
Relation<O> relation)
Run the algorithm
|
Result |
NaiveAgglomerativeHierarchicalClustering1.run(Database db,
Relation<O> relation)
Run the algorithm
|
Result |
NaiveAgglomerativeHierarchicalClustering2.run(Database db,
Relation<O> relation)
Run the algorithm
|
Clustering<MeanModel> |
SameSizeKMeansAlgorithm.run(Database database,
Relation<V> relation)
Run k-means with cluster size constraints.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
ODIN.run(Database database,
Relation<O> relation)
Run the ODIN algorithm
Tutorial note: the signature of this method depends on the types
that we requested in the
ODIN.getInputTypeRestriction() method. |
OutlierResult |
DistanceStddevOutlier.run(Database database,
Relation<O> relation)
Run the outlier detection algorithm
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.