Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation |
Affinity Propagation (AP) clustering.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering |
Biclustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.em |
Expectation-Maximization clustering algorithm.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction |
Extraction of partitional clusterings from hierarchical results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.parallel |
Parallelized implementations of k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.meta |
Meta clustering algorithms, that get their result from other clusterings or external sources.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional |
Clustering algorithms for one-dimensional data.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.optics |
OPTICS family of clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in evaluation.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain |
Clustering algorithms for uncertain data.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.clustering |
Clustering based outlier detection.
|
de.lmu.ifi.dbs.elki.evaluation.clustering |
Evaluation of clustering results.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractProjectedClustering<R extends Clustering<?>,V extends NumberVector>
|
class |
CanopyPreClustering<O>
Canopy pre-clustering is a simple preprocessing step for clustering.
|
class |
DBSCAN<O>
Density-Based Clustering of Applications with Noise (DBSCAN), an algorithm to
find density-connected sets in a database.
|
class |
NaiveMeanShiftClustering<V extends NumberVector>
Mean-shift based clustering algorithm.
|
class |
SNNClustering<O>
Shared nearest neighbor clustering.
|
Modifier and Type | Class and Description |
---|---|
class |
AffinityPropagationClusteringAlgorithm<O>
Cluster analysis by affinity propagation.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBiclustering<V extends NumberVector,M extends BiclusterModel>
Abstract class as a convenience for different biclustering approaches.
|
class |
ChengAndChurch<V extends NumberVector>
Perform Cheng and Church biclustering.
|
Modifier and Type | Class and Description |
---|---|
class |
CASH<V extends NumberVector>
The CASH algorithm is a subspace clustering algorithm based on the Hough
transform.
|
class |
COPAC<V extends NumberVector>
COPAC is an algorithm to partition a database according to the correlation
dimension of its objects and to then perform an arbitrary clustering
algorithm over the partitions.
|
class |
ERiC<V extends NumberVector>
Performs correlation clustering on the data partitioned according to local
correlation dimensionality and builds a hierarchy of correlation clusters
that allows multiple inheritance from the clustering result.
|
class |
FourC<V extends NumberVector>
4C identifies local subgroups of data objects sharing a uniform correlation.
|
class |
ORCLUS<V extends NumberVector>
ORCLUS: Arbitrarily ORiented projected CLUSter generation.
|
Modifier and Type | Class and Description |
---|---|
class |
EM<V extends NumberVector,M extends MeanModel>
Clustering by expectation maximization (EM-Algorithm), also known as Gaussian
Mixture Modeling (GMM).
|
Modifier and Type | Class and Description |
---|---|
class |
GeneralizedDBSCAN
Generalized DBSCAN, density-based clustering with noise.
|
class |
LSDBC<O extends NumberVector>
Locally scaled Density Based Clustering.
|
Modifier and Type | Class and Description |
---|---|
class |
ExtractFlatClusteringFromHierarchy
Extract a flat clustering from a full hierarchy, represented in pointer form.
|
class |
HDBSCANHierarchyExtraction
Extraction of simplified cluster hierarchies, as proposed in HDBSCAN.
|
class |
SimplifiedHierarchyExtraction
Extraction of simplified cluster hierarchies, as proposed in HDBSCAN.
|
Modifier and Type | Interface and Description |
---|---|
interface |
KMeans<V extends NumberVector,M extends Model>
Some constants and options shared among kmeans family algorithms.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKMeans<V extends NumberVector,M extends Model>
Abstract base class for k-means implementations.
|
class |
BestOfMultipleKMeans<V extends NumberVector,M extends MeanModel>
Run K-Means multiple times, and keep the best run.
|
class |
CLARA<V>
Clustering Large Applications (CLARA) is a clustering method for large data
sets based on PAM, partitioning around medoids (
KMedoidsPAM ) based on
sampling. |
class |
KMeansBatchedLloyd<V extends NumberVector>
An algorithm for k-means, using Lloyd-style bulk iterations.
|
class |
KMeansBisecting<V extends NumberVector,M extends MeanModel>
The bisecting k-means algorithm works by starting with an initial
partitioning into two clusters, then repeated splitting of the largest
cluster to get additional clusters.
|
class |
KMeansElkan<V extends NumberVector>
Elkan's fast k-means by exploiting the triangle inequality.
|
class |
KMeansHamerly<V extends NumberVector>
Hamerly's fast k-means by exploiting the triangle inequality.
|
class |
KMeansHybridLloydMacQueen<V extends NumberVector>
A hybrid k-means algorithm, alternating between MacQueen-style incremental
processing and Lloyd-Style batch steps.
|
class |
KMeansLloyd<V extends NumberVector>
The standard k-means algorithm, using Lloyd-style bulk iterations.
|
class |
KMeansMacQueen<V extends NumberVector>
The original k-means algorithm, using MacQueen style incremental updates;
making this effectively an "online" (streaming) algorithm.
|
class |
KMediansLloyd<V extends NumberVector>
k-medians clustering algorithm, but using Lloyd-style bulk iterations instead
of the more complicated approach suggested by Kaufman and Rousseeuw (see
KMedoidsPAM instead). |
class |
KMedoidsEM<V>
A k-medoids clustering algorithm, implemented as EM-style bulk algorithm.
|
class |
KMedoidsPAM<V>
The original PAM algorithm or k-medoids clustering, as proposed by Kaufman
and Rousseeuw in "Partitioning Around Medoids".
|
class |
SingleAssignmentKMeans<V extends NumberVector>
Pseudo-k-Means variations, that assigns each object to the nearest center.
|
class |
XMeans<V extends NumberVector,M extends MeanModel>
X-means: Extending K-means with Efficient Estimation on the Number of
Clusters.
|
Modifier and Type | Class and Description |
---|---|
class |
ParallelLloydKMeans<V extends NumberVector>
Parallel implementation of k-Means clustering.
|
Modifier and Type | Class and Description |
---|---|
class |
ExternalClustering
Read an external clustering result from a file, such as produced by
ClusteringVectorDumper . |
Modifier and Type | Class and Description |
---|---|
class |
KNNKernelDensityMinimaClustering<V extends NumberVector>
Cluster one-dimensional data by splitting the data set on local minima after
performing kernel density estimation.
|
Modifier and Type | Class and Description |
---|---|
class |
OPTICSXi
Class to handle OPTICS Xi extraction.
|
Modifier and Type | Interface and Description |
---|---|
interface |
SubspaceClusteringAlgorithm<M extends SubspaceModel>
Interface for subspace clustering algorithms that use a model derived from
SubspaceModel , that can then be post-processed for outlier detection. |
Modifier and Type | Class and Description |
---|---|
class |
CLIQUE<V extends NumberVector>
Implementation of the CLIQUE algorithm, a grid-based algorithm to identify
dense clusters in subspaces of maximum dimensionality.
|
class |
DiSH<V extends NumberVector>
Algorithm for detecting subspace hierarchies.
|
class |
DOC<V extends NumberVector>
The DOC algorithm, and it's heuristic variant, FastDOC.
|
class |
P3C<V extends NumberVector>
P3C: A Robust Projected Clustering Algorithm.
|
class |
PreDeCon<V extends NumberVector>
PreDeCon computes clusters of subspace preference weighted connected points.
|
class |
PROCLUS<V extends NumberVector>
The PROCLUS algorithm, an algorithm to find subspace clusters in high
dimensional spaces.
|
class |
SUBCLU<V extends NumberVector>
Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily
shaped and positioned clusters in subspaces.
|
Modifier and Type | Class and Description |
---|---|
class |
ByLabelClustering
Pseudo clustering using labels.
|
class |
ByLabelHierarchicalClustering
Pseudo clustering using labels.
|
class |
ByLabelOrAllInOneClustering
Trivial class that will try to cluster by label, and fall back to an
"all-in-one" clustering.
|
class |
ByModelClustering
Pseudo clustering using annotated models.
|
class |
TrivialAllInOne
Trivial pseudo-clustering that just considers all points to be one big
cluster.
|
class |
TrivialAllNoise
Trivial pseudo-clustering that just considers all points to be noise.
|
Modifier and Type | Class and Description |
---|---|
class |
CenterOfMassMetaClustering<C extends Clustering<?>>
Center-of-mass meta clustering reduces uncertain objects to their center of
mass, then runs a vector-oriented clustering algorithm on this data set.
|
class |
CKMeans
Run k-means on the centers of each uncertain object.
|
class |
FDBSCAN
FDBSCAN is an adaption of DBSCAN for fuzzy (uncertain) objects.
|
class |
RepresentativeUncertainClustering
Representative clustering of uncertain data.
|
class |
UKMeans
Uncertain K-Means clustering, using the average deviation from the center.
|
Modifier and Type | Field and Description |
---|---|
protected ClusteringAlgorithm<C> |
CenterOfMassMetaClustering.inner
The algorithm to be wrapped and run.
|
protected ClusteringAlgorithm<C> |
CenterOfMassMetaClustering.Parameterizer.inner
Field to store the algorithm.
|
protected ClusteringAlgorithm<?> |
RepresentativeUncertainClustering.metaAlgorithm
The algorithm for meta-clustering.
|
protected ClusteringAlgorithm<?> |
RepresentativeUncertainClustering.Parameterizer.metaAlgorithm
Field to store the inner algorithm for meta-clustering
|
protected ClusteringAlgorithm<?> |
RepresentativeUncertainClustering.samplesAlgorithm
The algorithm to be wrapped and run.
|
protected ClusteringAlgorithm<?> |
RepresentativeUncertainClustering.Parameterizer.samplesAlgorithm
Field to store the algorithm.
|
Constructor and Description |
---|
CenterOfMassMetaClustering(ClusteringAlgorithm<C> inner)
Constructor, quite trivial.
|
RepresentativeUncertainClustering(ClusteringDistanceSimilarityFunction distance,
ClusteringAlgorithm<?> metaAlgorithm,
ClusteringAlgorithm<?> samplesAlgorithm,
int numsamples,
RandomFactory random,
double alpha,
boolean keep)
Constructor, quite trivial.
|
RepresentativeUncertainClustering(ClusteringDistanceSimilarityFunction distance,
ClusteringAlgorithm<?> metaAlgorithm,
ClusteringAlgorithm<?> samplesAlgorithm,
int numsamples,
RandomFactory random,
double alpha,
boolean keep)
Constructor, quite trivial.
|
Modifier and Type | Field and Description |
---|---|
(package private) ClusteringAlgorithm<?> |
SilhouetteOutlierDetection.clusterer
Clustering algorithm to use
|
(package private) ClusteringAlgorithm<?> |
SilhouetteOutlierDetection.Parameterizer.clusterer
Clustering algorithm to use
|
Constructor and Description |
---|
SilhouetteOutlierDetection(DistanceFunction<? super O> distanceFunction,
ClusteringAlgorithm<?> clusterer,
NoiseHandling noiseOption)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private ClusteringAlgorithm<?> |
EvaluateClustering.referencealg
Reference algorithm.
|
protected ClusteringAlgorithm<?> |
EvaluateClustering.Parameterizer.referencealg |
Constructor and Description |
---|
EvaluateClustering(ClusteringAlgorithm<?> referencealg,
boolean noiseSpecialHandling,
boolean selfPairing)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
SameSizeKMeansAlgorithm<V extends NumberVector>
K-means variation that produces equally sized clusters.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.