Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash |
Helper classes for the
CASH algorithm. |
de.lmu.ifi.dbs.elki.algorithm.clustering.em |
Expectation-Maximization clustering algorithm.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization |
Initialization strategies for k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.parallel |
Parallelized implementations of k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain |
Clustering algorithms for uncertain data.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.subspace |
Subspace outlier detection methods.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.data.spatial |
Spatial data types - interfaces and utilities.
|
de.lmu.ifi.dbs.elki.data.synthetic.bymodel |
Generator using a distribution model specified in an XML configuration file.
|
de.lmu.ifi.dbs.elki.data.type |
Data type information, also used for type restrictions.
|
de.lmu.ifi.dbs.elki.datasource |
Data normalization (and reconstitution) of data sets.
|
de.lmu.ifi.dbs.elki.datasource.parser |
Parsers for different file formats and data types.
|
de.lmu.ifi.dbs.elki.evaluation.outlier |
Evaluate an outlier score using a misclassification based cost model.
|
de.lmu.ifi.dbs.elki.index.tree.spatial |
Tree-based index structures for spatial indexing.
|
de.lmu.ifi.dbs.elki.math |
Mathematical operations and utilities used throughout the framework.
|
de.lmu.ifi.dbs.elki.math.geometry |
Algorithms from computational geometry.
|
de.lmu.ifi.dbs.elki.math.linearalgebra |
Linear Algebra package provides classes and computational methods for operations on matrices.
|
de.lmu.ifi.dbs.elki.math.statistics |
Statistical tests and methods.
|
de.lmu.ifi.dbs.elki.result.textwriter.writers |
Serialization handlers for individual data types.
|
de.lmu.ifi.dbs.elki.utilities |
Utility and helper classes - commonly used data structures, output formatting, exceptions, ...
|
de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike |
Common API for accessing objects that are "array-like", including lists, numerical vectors, database vectors and arrays.
|
de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters |
Classes for various typed parameters.
|
de.lmu.ifi.dbs.elki.visualization.svg |
Base SVG functionality (generation, markers, thumbnails, export, ...).
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster |
Visualizers for clustering results based on 2D projections.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.outlier |
Visualizers for outlier scores based on 2D projections.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection |
Visualizers for object selection based on 2D projections.
|
Modifier and Type | Method and Description |
---|---|
CorrelationAnalysisSolution<V> |
DependencyDerivator.generateModel(Relation<V> db,
DBIDs ids,
Vector centroid)
Runs the pca on the given set of IDs and for the given centroid.
|
Modifier and Type | Field and Description |
---|---|
(package private) Vector |
LMCLUS.Separation.originV
Origin vector
|
Modifier and Type | Method and Description |
---|---|
private void |
HiCO.adjust(Matrix v,
Matrix e_czech,
Vector vector,
int corrDim)
Inserts the specified vector into the given orthonormal matrix
v at column corrDim . |
private double |
LMCLUS.deviation(Vector delta,
Matrix beta)
Deviation from a manifold described by beta.
|
Modifier and Type | Method and Description |
---|---|
private Matrix |
LMCLUS.generateOrthonormalBasis(List<Vector> vectors)
This Method generates an orthonormal basis from a set of Vectors.
|
Modifier and Type | Method and Description |
---|---|
Vector |
ParameterizationFunction.getColumnVector()
Get the actual vector used.
|
Modifier and Type | Field and Description |
---|---|
(package private) Vector |
SphericalGaussianModel.mean
Mean vector.
|
(package private) Vector |
MultivariateGaussianModel.mean
Mean vector.
|
(package private) Vector |
DiagonalGaussianModel.mean
Mean vector.
|
Modifier and Type | Method and Description |
---|---|
double |
SphericalGaussianModel.mahalanobisDistance(Vector vec)
Compute the Mahalanobis distance from the centroid for a given vector.
|
double |
MultivariateGaussianModel.mahalanobisDistance(Vector vec)
Compute the Mahalanobis distance from the centroid for a given vector.
|
double |
DiagonalGaussianModel.mahalanobisDistance(Vector vec)
Compute the Mahalanobis distance from the centroid for a given vector.
|
Constructor and Description |
---|
DiagonalGaussianModel(double weight,
Vector mean)
Constructor.
|
DiagonalGaussianModel(double weight,
Vector mean,
double norm)
Constructor.
|
MultivariateGaussianModel(double weight,
Vector mean)
Constructor.
|
MultivariateGaussianModel(double weight,
Vector mean,
double norm)
Constructor.
|
SphericalGaussianModel(double weight,
Vector mean)
Constructor.
|
SphericalGaussianModel(double weight,
Vector mean,
double norm)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected List<Vector> |
AbstractKMeans.means(List<? extends DBIDs> clusters,
List<? extends NumberVector> means,
Relation<V> database)
Returns the mean vectors of the given clusters in the given database.
|
protected List<Vector> |
AbstractKMeans.medians(List<? extends DBIDs> clusters,
List<Vector> medians,
Relation<V> database)
Returns the median vectors of the given clusters in the given database.
|
Modifier and Type | Method and Description |
---|---|
protected void |
AbstractKMeans.incrementalUpdateMean(Vector mean,
V vec,
int newsize,
double op)
Compute an incremental update for the mean.
|
Modifier and Type | Method and Description |
---|---|
private int |
KMeansElkan.assignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] sep,
double[][] cdist,
WritableDoubleDataStore upper,
WritableDataStore<double[]> lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansElkan.assignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] sep,
double[][] cdist,
WritableDoubleDataStore upper,
WritableDataStore<double[]> lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansHamerly.assignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] sep,
WritableDoubleDataStore upper,
WritableDoubleDataStore lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansHamerly.assignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] sep,
WritableDoubleDataStore upper,
WritableDoubleDataStore lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansElkan.initialAssignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
WritableDoubleDataStore upper,
WritableDataStore<double[]> lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansElkan.initialAssignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
WritableDoubleDataStore upper,
WritableDataStore<double[]> lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansHamerly.initialAssignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
WritableDoubleDataStore upper,
WritableDoubleDataStore lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansHamerly.initialAssignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
WritableDoubleDataStore upper,
WritableDoubleDataStore lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
protected boolean |
AbstractKMeans.macQueenIterate(Relation<V> relation,
List<Vector> means,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] varsum)
Perform a MacQueen style iteration.
|
private double |
KMeansHamerly.maxMoved(List<Vector> means,
List<Vector> newmeans,
double[] dists)
Maximum distance moved.
|
private double |
KMeansHamerly.maxMoved(List<Vector> means,
List<Vector> newmeans,
double[] dists)
Maximum distance moved.
|
private double |
KMeansElkan.maxMoved(List<Vector> means,
List<Vector> newmeans,
double[] dists)
Maximum distance moved.
|
private double |
KMeansElkan.maxMoved(List<Vector> means,
List<Vector> newmeans,
double[] dists)
Maximum distance moved.
|
protected List<Vector> |
AbstractKMeans.medians(List<? extends DBIDs> clusters,
List<Vector> medians,
Relation<V> database)
Returns the median vectors of the given clusters in the given database.
|
private void |
KMeansHamerly.recomputeSeperation(List<Vector> means,
double[] sep)
Recompute the separation of cluster means.
|
private void |
KMeansElkan.recomputeSeperation(List<Vector> means,
double[] sep,
double[][] cdist)
Recompute the separation of cluster means.
|
private boolean |
AbstractKMeans.updateMeanAndAssignment(List<ModifiableDBIDs> clusters,
List<Vector> means,
int minIndex,
V fv,
DBIDIter iditer,
WritableIntegerDataStore assignment)
Try to update the cluster assignment.
|
protected void |
KMeansBatchedLloyd.updateMeans(List<Vector> means,
double[][] meanshift,
List<ModifiableDBIDs> clusters,
int[] changesize)
Merge changes into mean vectors.
|
Modifier and Type | Field and Description |
---|---|
protected List<Vector> |
PredefinedInitialMeans.Parameterizer.initialMeans
Initial means.
|
Modifier and Type | Field and Description |
---|---|
private Vector[] |
KMeansProcessor.Instance.means
Current mean vectors.
|
Modifier and Type | Field and Description |
---|---|
(package private) List<Vector> |
KMeansProcessor.means
Mean vectors.
|
Modifier and Type | Method and Description |
---|---|
List<Vector> |
KMeansProcessor.getMeans()
Get the new means.
|
Modifier and Type | Method and Description |
---|---|
void |
KMeansProcessor.nextIteration(List<Vector> means)
Initialize for a new iteration.
|
Modifier and Type | Field and Description |
---|---|
(package private) Vector |
PROCLUS.PROCLUSCluster.centroid
The centroids of this cluster along each dimension.
|
Modifier and Type | Method and Description |
---|---|
private List<Pair<Vector,long[]>> |
PROCLUS.findDimensions(ArrayList<PROCLUS.PROCLUSCluster> clusters,
Relation<V> database)
Refinement step that determines the set of correlated dimensions for each
cluster centroid.
|
Modifier and Type | Method and Description |
---|---|
private double |
PROCLUS.avgDistance(Vector centroid,
DBIDs objectIDs,
Relation<V> database,
int dimension)
Computes the average distance of the objects to the centroid along the
specified dimension.
|
Modifier and Type | Method and Description |
---|---|
private List<PROCLUS.PROCLUSCluster> |
PROCLUS.finalAssignment(List<Pair<Vector,long[]>> dimensions,
Relation<V> database)
Refinement step to assign the objects to the final clusters.
|
Constructor and Description |
---|
PROCLUS.PROCLUSCluster(ModifiableDBIDs objectIDs,
long[] dimensions,
Vector centroid)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected List<Vector> |
UKMeans.means(List<? extends ModifiableDBIDs> clusters,
List<? extends NumberVector> means,
Relation<DiscreteUncertainObject> database)
Returns the mean vectors of the given clusters in the given database.
|
Modifier and Type | Method and Description |
---|---|
protected double |
UKMeans.getExpectedRepDistance(Vector rep,
DiscreteUncertainObject uo)
Get expected distance between a Vector and an uncertain object
|
Modifier and Type | Method and Description |
---|---|
protected boolean |
UKMeans.assignToNearestCluster(Relation<DiscreteUncertainObject> relation,
List<Vector> means,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] varsum)
Returns a list of clusters.
|
Modifier and Type | Field and Description |
---|---|
(package private) Vector |
ALOCI.Node.center
Center vector
|
Modifier and Type | Method and Description |
---|---|
Vector |
ALOCI.Node.getCenter()
Return center vector
|
Constructor and Description |
---|
ALOCI.Node(int code,
Vector center,
int count,
int level,
List<ALOCI.Node> children)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Vector |
SOD.SODModel.center
Center vector
|
Modifier and Type | Method and Description |
---|---|
private static double[] |
SOD.computePerDimensionVariances(Relation<? extends NumberVector> relation,
Vector center,
DBIDs neighborhood)
Compute the per-dimension variances for the given neighborhood and center.
|
private double |
SOD.subspaceOutlierDegree(V queryObject,
Vector center,
long[] weightVector)
Compute SOD score.
|
Constructor and Description |
---|
SOD.SODModel(Vector center,
long[] weightVector)
Initialize SOD Model
|
Modifier and Type | Method and Description |
---|---|
static Vector |
VectorUtil.computeMedoid(Relation<? extends NumberVector> relation,
DBIDs sample)
Compute medoid for a given subset.
|
Vector |
SparseShortVector.getColumnVector() |
Vector |
SparseIntegerVector.getColumnVector() |
Vector |
SparseFloatVector.getColumnVector() |
Vector |
SparseDoubleVector.getColumnVector() |
Vector |
SparseByteVector.getColumnVector() |
Vector |
ShortVector.getColumnVector() |
Vector |
OneDimensionalDoubleVector.getColumnVector() |
Vector |
NumberVector.getColumnVector()
Returns a Vector representing in one column and
getDimensionality() rows the values of this NumberVector of V. |
Vector |
IntegerVector.getColumnVector() |
Vector |
FloatVector.getColumnVector() |
Vector |
DoubleVector.getColumnVector() |
Vector |
ByteVector.getColumnVector() |
Vector |
BitVector.getColumnVector()
Returns a Vector representing in one column and
getDimensionality() rows the values of this BitVector as
double values. |
Modifier and Type | Method and Description |
---|---|
static double |
VectorUtil.angle(NumberVector v1,
NumberVector v2,
Vector o)
Compute the angle between two vectors.
|
Constructor and Description |
---|
DoubleVector(Vector columnMatrix)
Expects a matrix of one column.
|
FloatVector(Vector columnMatrix)
Expects a matrix of one column.
|
Modifier and Type | Field and Description |
---|---|
private Vector |
CorrelationAnalysisSolution.centroid
The centroid if the objects belonging to the hyperplane induced by the
correlation.
|
Modifier and Type | Method and Description |
---|---|
Vector |
CorrelationAnalysisSolution.dataVector(V p)
Returns the data vectors after projection.
|
Vector |
CorrelationAnalysisSolution.errorVector(V p)
Returns the error vectors after projection.
|
Vector |
CorrelationAnalysisSolution.getCentroid()
Returns the centroid of this model.
|
Vector |
MeanModel.getMean() |
Modifier and Type | Method and Description |
---|---|
private double |
CorrelationAnalysisSolution.distance(Vector p)
Returns the distance of Matrix p from the hyperplane underlying this
solution.
|
Constructor and Description |
---|
CorrelationAnalysisSolution(LinearEquationSystem solution,
Relation<V> db,
Matrix strongEigenvectors,
Matrix weakEigenvectors,
Matrix similarityMatrix,
Vector centroid)
Provides a new CorrelationAnalysisSolution holding the specified matrix.
|
CorrelationAnalysisSolution(LinearEquationSystem solution,
Relation<V> db,
Matrix strongEigenvectors,
Matrix weakEigenvectors,
Matrix similarityMatrix,
Vector centroid,
NumberFormat nf)
Provides a new CorrelationAnalysisSolution holding the specified matrix and
number format.
|
EMModel(Vector mean,
Matrix covarianceMatrix)
Constructor.
|
KMeansModel(Vector mean,
double varsum)
Constructor with mean.
|
MeanModel(Vector mean)
Constructor with mean
|
SubspaceModel(Subspace subspace,
Vector mean)
Creates a new SubspaceModel for the specified subspace with the given
cluster mean.
|
Modifier and Type | Field and Description |
---|---|
private List<Vector> |
Polygon.points
The actual points
|
Modifier and Type | Method and Description |
---|---|
Vector |
Polygon.get(int idx)
Get a vector by index.
|
Modifier and Type | Method and Description |
---|---|
ArrayListIter<Vector> |
Polygon.iter()
Get an iterator to the vector contents.
|
Modifier and Type | Method and Description |
---|---|
boolean |
Polygon.containsPoint2D(Vector v)
Point in polygon test, based on
http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
by W.
|
Constructor and Description |
---|
Polygon(List<Vector> points)
Constructor.
|
Polygon(List<Vector> points,
double minx,
double maxx,
double miny,
double maxy) |
Modifier and Type | Field and Description |
---|---|
private Vector |
GeneratorSingleCluster.clipmax |
private Vector |
GeneratorSingleCluster.clipmin
Clipping vectors.
|
Modifier and Type | Field and Description |
---|---|
List<Vector> |
GeneratorStatic.points
Cluster points
|
Modifier and Type | Method and Description |
---|---|
Vector |
GeneratorSingleCluster.getClipmax()
Return a copy of the 'clipping maximum' vector
|
Vector |
GeneratorSingleCluster.getClipmin()
Return a copy of the 'clipping minimum' vector.
|
Modifier and Type | Method and Description |
---|---|
List<Vector> |
GeneratorStatic.generate(int count)
"Generate" new cluster points.
|
List<Vector> |
GeneratorSingleCluster.generate(int count)
Generate the given number of additional points.
|
List<Vector> |
GeneratorInterface.generate(int count)
Generate a specified number of points
|
Modifier and Type | Method and Description |
---|---|
void |
GeneratorSingleCluster.addTranslation(Vector v)
Add a translation to the generator
|
double |
GeneratorStatic.getDensity(Vector p) |
double |
GeneratorSingleCluster.getDensity(Vector p)
Compute density for cluster model at given vector p-
|
double |
GeneratorInterface.getDensity(Vector p)
Get the density of the given vector
|
void |
GeneratorSingleCluster.setClipping(Vector min,
Vector max)
Set a clipping box. min needs to be smaller than max in each component.
|
private boolean |
GeneratorSingleCluster.testClipping(Vector p)
Test if a point is to be clipped
|
Constructor and Description |
---|
GeneratorStatic(String name,
List<Vector> points)
Construct generator using given name and points
|
Modifier and Type | Field and Description |
---|---|
static SimpleTypeInformation<Vector> |
TypeUtil.VECTOR
Vector type.
|
Modifier and Type | Method and Description |
---|---|
private Vector |
GeneratorXMLDatabaseConnection.parseVector(String s)
Parse a string into a vector.
|
Modifier and Type | Method and Description |
---|---|
private void |
GeneratorXMLDatabaseConnection.processElementPoint(List<Vector> points,
Node cur)
Parse a 'point' element (point vector for a static cluster)
|
Modifier and Type | Field and Description |
---|---|
private List<Vector> |
SimplePolygonParser.coords
(Reused) storage of coordinates.
|
Constructor and Description |
---|
JudgeOutlierScores.ScoreResult(Collection<Vector> col)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
Vector |
SpatialPointLeafEntry.getColumnVector() |
Modifier and Type | Method and Description |
---|---|
static double |
MathUtil.angle(Vector v1,
Vector v2)
Compute the angle between two vectors.
|
static double |
MathUtil.angle(Vector v1,
Vector v2,
Vector o)
Compute the angle between two vectors.
|
static double |
MathUtil.mahalanobisDistance(Matrix weightMatrix,
Vector o1_minus_o2)
Compute the Mahalanobis distance using the given weight matrix.
|
static double |
MathUtil.mahalanobisDistance(Matrix weightMatrix,
Vector o1,
Vector o2)
Compute the Mahalanobis distance using the given weight matrix.
|
Modifier and Type | Field and Description |
---|---|
Vector |
SweepHullDelaunay2D.Triangle.m
Center vector
|
Modifier and Type | Field and Description |
---|---|
private List<Vector> |
SweepHullDelaunay2D.points
The current set of points.
|
private List<Vector> |
GrahamScanConvexHull2D.points
The current set of points
|
private List<Vector> |
AlphaShape.points
Points
|
Modifier and Type | Method and Description |
---|---|
void |
SweepHullDelaunay2D.add(Vector point)
Add a single point to the list (this does not compute or update the
triangulation!)
|
void |
GrahamScanConvexHull2D.add(Vector point)
Add a single point to the list (this does not compute the hull!)
|
private double |
GrahamScanConvexHull2D.getRX(Vector a,
Vector origin)
Get the relative X coordinate to the origin.
|
private double |
GrahamScanConvexHull2D.getRY(Vector a,
Vector origin)
Get the relative Y coordinate to the origin.
|
boolean |
SweepHullDelaunay2D.Triangle.inCircle(Vector opp)
Test whether a point is within the circumference circle.
|
private boolean |
GrahamScanConvexHull2D.isConvex(Vector a,
Vector b,
Vector c)
Simple convexity test.
|
protected int |
GrahamScanConvexHull2D.isLeft(Vector a,
Vector b,
Vector o)
Test whether a point is left of the other wrt. the origin.
|
(package private) boolean |
SweepHullDelaunay2D.leftOf(Vector a,
Vector b,
Vector d)
Test if the vector AD is right of AB.
|
private double |
GrahamScanConvexHull2D.mdist(Vector a,
Vector b)
Manhattan distance.
|
static double |
SweepHullDelaunay2D.quadraticEuclidean(Vector v1,
Vector v2)
Squared euclidean distance. 2d.
|
Modifier and Type | Method and Description |
---|---|
(package private) boolean |
SweepHullDelaunay2D.Triangle.isClockwise(List<Vector> points)
Verify that the triangle is clockwise
|
(package private) void |
SweepHullDelaunay2D.Triangle.makeClockwise(List<Vector> points)
Make the triangle clockwise
|
private void |
AlphaShape.processNeighbor(List<Vector> cur,
long[] used,
int i,
int ab,
int b) |
(package private) boolean |
SweepHullDelaunay2D.Triangle.updateCircumcircle(List<Vector> points)
Recompute the location and squared radius of circumcircle.
|
Constructor and Description |
---|
AlphaShape(List<Vector> points,
double alpha) |
SweepHullDelaunay2D(List<Vector> points)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
Centroid
Class to compute the centroid of some data.
|
class |
ProjectedCentroid
Centroid only using a subset of dimensions.
|
Modifier and Type | Field and Description |
---|---|
private Vector |
EigenPair.eigenvector
The eigenvector as a matrix.
|
Modifier and Type | Field and Description |
---|---|
static ByteBufferSerializer<Vector> |
Vector.BYTE_SERIALIZER
Serializer for up to 127 dimensions.
|
static ByteBufferSerializer<Vector> |
Vector.SHORT_SERIALIZER
Serializer for up to 2^15-1 dimensions.
|
static ByteBufferSerializer<Vector> |
Vector.VARIABLE_SERIALIZER
Serializer using varint encoding.
|
Modifier and Type | Method and Description |
---|---|
Vector |
AffineTransformation.apply(Vector v)
Apply the transformation onto a vector
|
Vector |
AffineTransformation.applyInverse(Vector v)
Apply the inverse transformation onto a vector
|
Vector |
AffineTransformation.applyRelative(Vector v)
Apply the transformation onto a vector
|
Vector |
AffineTransformation.applyRelativeInverse(Vector v)
Apply the inverse transformation onto a vector
|
Vector |
Vector.clone() |
Vector |
Vector.copy()
Returns a copy of this vector.
|
Vector |
Vector.cross3D(Vector other)
Cross product for 3d vectors, i.e.
|
Vector |
Vector.SmallSerializer.fromByteBuffer(ByteBuffer buffer) |
Vector |
Vector.ShortSerializer.fromByteBuffer(ByteBuffer buffer) |
Vector |
Vector.VariableSerializer.fromByteBuffer(ByteBuffer buffer) |
Vector |
Matrix.getCol(int j)
Returns the
j th column of this matrix as vector. |
Vector |
Vector.getColumnVector() |
Vector |
EigenPair.getEigenvector()
Returns the eigenvector.
|
Vector |
CovarianceMatrix.getMeanVector()
Get the mean as vector.
|
Vector |
Matrix.getRow(int i)
Returns the
i th row of this matrix as vector. |
Vector |
AffineTransformation.homogeneRelativeVector(Vector v)
Transform a relative vector into homogeneous coordinates.
|
Vector |
AffineTransformation.homogeneVector(Vector v)
Transform an absolute vector into homogeneous coordinates.
|
Vector |
Vector.minus(Vector v)
Returns this vector minus the specified vector v.
|
Vector |
Vector.minusEquals(double d)
Subtract a constant value from all dimensions.
|
Vector |
Vector.minusEquals(Vector b)
a = a - b.
|
Vector |
Vector.minusTimes(Vector v,
double s)
Returns this vector minus the specified vector v times s.
|
Vector |
Vector.minusTimesEquals(Vector b,
double s)
a = a - s * b.
|
<A> Vector |
Vector.Factory.newFeatureVector(A array,
ArrayAdapter<? extends Number,A> adapter) |
<A> Vector |
Vector.Factory.newNumberVector(A array,
NumberArrayAdapter<?,? super A> adapter) |
Vector |
Vector.Factory.newNumberVector(double[] values) |
Vector |
Vector.Factory.newNumberVector(NumberVector values) |
Vector |
Vector.normalize()
Normalizes this vector to the length of 1.0.
|
Vector |
Vector.plus(Vector v)
Returns a new vector which is the result of this vector plus the specified
vector.
|
Vector |
Vector.plusEquals(double d)
Add a constant value to all dimensions.
|
Vector |
Vector.plusEquals(Vector b)
a = a + b.
|
Vector |
Vector.plusTimes(Vector v,
double s)
Returns a new vector which is the result of this vector plus the specified
vector times the given factor.
|
Vector |
Vector.plusTimesEquals(Vector b,
double s)
a = a + s * b.
|
Vector |
Vector.projection(Matrix v)
Projects this row vector into the subspace formed by the specified matrix
v.
|
static Vector |
Vector.randomNormalizedVector(int dimensionality)
Returns a randomly created vector of length 1.0.
|
Vector |
Vector.rotate90Equals()
Rotate vector by 90 degrees.
|
Vector |
Vector.set(int i,
double value)
Sets the value at the specified row.
|
Vector |
Vector.set(Vector v)
Copy the values of another vector into the current vector.
|
Vector |
Vector.times(double s)
Returns a new vector which is the result of this vector multiplied by the
specified scalar.
|
Vector |
Matrix.times(Vector B)
Linear algebraic matrix multiplication, A * B
|
Vector |
Vector.timesEquals(double s)
Multiply a matrix by a scalar in place, A = s*A.
|
Vector |
Matrix.transposeTimes(Vector B)
Linear algebraic matrix multiplication, AT * B
|
Vector |
AffineTransformation.unhomogeneRelativeVector(Vector v)
Project an homogeneous vector back into the original space.
|
Vector |
AffineTransformation.unhomogeneVector(Vector v)
Project an homogeneous vector back into the original space.
|
static Vector |
Vector.unitVector(int dimensionality,
int i)
Returns the ith unit vector of the specified dimensionality.
|
Modifier and Type | Method and Description |
---|---|
ByteBufferSerializer<Vector> |
Vector.Factory.getDefaultSerializer() |
Class<? super Vector> |
Vector.Factory.getRestrictionClass() |
Modifier and Type | Method and Description |
---|---|
void |
AffineTransformation.addTranslation(Vector v)
Add a translation operation to the matrix
|
Vector |
AffineTransformation.apply(Vector v)
Apply the transformation onto a vector
|
Vector |
AffineTransformation.applyInverse(Vector v)
Apply the inverse transformation onto a vector
|
Vector |
AffineTransformation.applyRelative(Vector v)
Apply the transformation onto a vector
|
Vector |
AffineTransformation.applyRelativeInverse(Vector v)
Apply the inverse transformation onto a vector
|
Vector |
Vector.cross3D(Vector other)
Cross product for 3d vectors, i.e.
|
static Matrix |
Matrix.diagonal(Vector diagonal)
Returns a quadratic Matrix consisting of zeros and of the given values on
the diagonal.
|
int |
Vector.SmallSerializer.getByteSize(Vector vec) |
int |
Vector.ShortSerializer.getByteSize(Vector vec) |
int |
Vector.VariableSerializer.getByteSize(Vector vec) |
Vector |
AffineTransformation.homogeneRelativeVector(Vector v)
Transform a relative vector into homogeneous coordinates.
|
Vector |
AffineTransformation.homogeneVector(Vector v)
Transform an absolute vector into homogeneous coordinates.
|
Vector |
Vector.minus(Vector v)
Returns this vector minus the specified vector v.
|
Vector |
Vector.minusEquals(Vector b)
a = a - b.
|
Vector |
Vector.minusTimes(Vector v,
double s)
Returns this vector minus the specified vector v times s.
|
Vector |
Vector.minusTimesEquals(Vector b,
double s)
a = a - s * b.
|
Vector |
Vector.plus(Vector v)
Returns a new vector which is the result of this vector plus the specified
vector.
|
Vector |
Vector.plusEquals(Vector b)
a = a + b.
|
Vector |
Vector.plusTimes(Vector v,
double s)
Returns a new vector which is the result of this vector plus the specified
vector times the given factor.
|
Vector |
Vector.plusTimesEquals(Vector b,
double s)
a = a + s * b.
|
void |
CovarianceMatrix.put(Vector val)
Add a single value with weight 1.0.
|
void |
Centroid.put(Vector val)
Add a single value with weight 1.0.
|
void |
CovarianceMatrix.put(Vector val,
double weight)
Add data with a given weight.
|
void |
Centroid.put(Vector val,
double weight)
Add data with a given weight.
|
Vector |
Vector.set(Vector v)
Copy the values of another vector into the current vector.
|
void |
Matrix.setCol(int j,
Vector column)
Sets the
j th column of this matrix to the specified column. |
void |
Matrix.setRow(int j,
Vector row)
Sets the
j th row of this matrix to the specified vector. |
Vector |
Matrix.times(Vector B)
Linear algebraic matrix multiplication, A * B
|
Matrix |
Vector.timesTranspose(Vector B)
Linear algebraic matrix multiplication, A * B^T.
|
void |
Vector.SmallSerializer.toByteBuffer(ByteBuffer buffer,
Vector vec) |
void |
Vector.ShortSerializer.toByteBuffer(ByteBuffer buffer,
Vector vec) |
void |
Vector.VariableSerializer.toByteBuffer(ByteBuffer buffer,
Vector vec) |
double |
Vector.transposeTimes(Vector B)
Linear algebraic matrix multiplication, AT * B.
|
Vector |
Matrix.transposeTimes(Vector B)
Linear algebraic matrix multiplication, AT * B
|
double |
Vector.transposeTimesTimes(Matrix B,
Vector c)
Linear algebraic matrix multiplication, aT * B * c.
|
Vector |
AffineTransformation.unhomogeneRelativeVector(Vector v)
Project an homogeneous vector back into the original space.
|
Vector |
AffineTransformation.unhomogeneVector(Vector v)
Project an homogeneous vector back into the original space.
|
Constructor and Description |
---|
EigenPair(Vector eigenvector,
double eigenvalue)
Creates a new EigenPair object.
|
Modifier and Type | Field and Description |
---|---|
private Vector |
MultipleLinearRegression.b
The (p+1 x 1) - vector holding the estimated b-values (b0, b1, ..., bp)^T.
|
private Vector |
MultipleLinearRegression.e
The (n x 1) - vector holding the estimated residuals (e1, ..., en)^T.
|
private Vector |
MultipleLinearRegression.y
The (n x 1) - vector holding the y-values (y1, ..., yn)^T.
|
Modifier and Type | Method and Description |
---|---|
Vector |
MultipleLinearRegression.getEstimatedCoefficients()
Returns the estimated coefficients
|
Vector |
MultipleLinearRegression.getEstimatedResiduals()
Returns the estimated residuals
|
Modifier and Type | Method and Description |
---|---|
private static Matrix |
PolynomialRegression.xMatrix(Vector x,
int p) |
Constructor and Description |
---|
MultipleLinearRegression(Vector y,
Matrix x)
Constructor.
|
PolynomialRegression(Vector y,
Vector x,
int p)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
void |
TextWriterVector.write(TextWriterStream out,
String label,
Vector v)
Serialize an object into the inline section.
|
Modifier and Type | Method and Description |
---|---|
static String |
FormatUtil.format(Vector m)
Returns String-representation of Vector.
|
static String |
FormatUtil.format(Vector v,
int w,
int d)
Returns a string representation of this matrix.
|
static String |
FormatUtil.format(Vector m,
NumberFormat nf)
returns String-representation of Vector.
|
static String |
FormatUtil.format(Vector v,
String pre)
Returns a string representation of this matrix.
|
Modifier and Type | Field and Description |
---|---|
static NumberArrayAdapter<Double,Vector> |
ArrayLikeUtil.VECTORADAPTER
Adapter for vectors.
|
Modifier and Type | Method and Description |
---|---|
Double |
VectorAdapter.get(Vector array,
int off)
Deprecated.
|
byte |
VectorAdapter.getByte(Vector array,
int off) |
double |
VectorAdapter.getDouble(Vector array,
int off) |
float |
VectorAdapter.getFloat(Vector array,
int off) |
int |
VectorAdapter.getInteger(Vector array,
int off) |
long |
VectorAdapter.getLong(Vector array,
int off) |
short |
VectorAdapter.getShort(Vector array,
int off) |
int |
VectorAdapter.size(Vector array) |
Modifier and Type | Method and Description |
---|---|
protected List<Vector> |
VectorListParameter.parseValue(Object obj) |
Constructor and Description |
---|
VectorListParameter(OptionID optionID,
ParameterConstraint<List<Vector>> constraint)
Constructs a vector list parameter with the given name and description.
|
VectorListParameter(OptionID optionID,
ParameterConstraint<List<Vector>> constraint,
boolean optional)
Constructs a vector list parameter with the given name and description.
|
VectorListParameter(OptionID optionID,
ParameterConstraint<List<Vector>> constraint,
List<Vector> defaultValue)
Constructs a vector list parameter with the given name and description.
|
VectorListParameter(OptionID optionID,
ParameterConstraint<List<Vector>> constraint,
List<Vector> defaultValue)
Constructs a vector list parameter with the given name and description.
|
Modifier and Type | Method and Description |
---|---|
SVGPath |
SVGPath.cubicTo(Vector c1xy,
Vector c2xy,
Vector xy)
Cubic Bezier line to the given coordinates.
|
SVGPath |
SVGPath.drawTo(Vector xy)
Draw a line given a series of coordinates.
|
SVGPath |
SVGPath.ellipticalArc(Vector rxy,
double ar,
double la,
double sp,
Vector xy)
Elliptical arc curve to the given coordinates.
|
SVGPath |
SVGPath.lineTo(Vector xy)
Draw a line to the given coordinates.
|
SVGPath |
SVGPath.moveTo(Vector xy)
Move to the given coordinates.
|
SVGPath |
SVGPath.quadTo(Vector c1xy,
Vector xy)
Quadratic Bezier line to the given coordinates.
|
SVGPath |
SVGPath.relativeCubicTo(Vector c1xy,
Vector c2xy,
Vector xy)
Cubic Bezier line to the given relative coordinates.
|
SVGPath |
SVGPath.relativeEllipticalArc(Vector rxy,
double ar,
double la,
double sp,
Vector xy)
Elliptical arc curve to the given relative coordinates.
|
SVGPath |
SVGPath.relativeLineTo(Vector xy)
Draw a line to the given relative coordinates.
|
SVGPath |
SVGPath.relativeMoveTo(Vector xy)
Move to the given relative coordinates.
|
SVGPath |
SVGPath.relativeQuadTo(Vector c1xy,
Vector xy)
Quadratic Bezier line to the given relative coordinates.
|
SVGPath |
SVGPath.relativeSmoothCubicTo(Vector c2xy,
Vector xy)
Smooth Cubic Bezier line to the given relative coordinates.
|
SVGPath |
SVGPath.relativeSmoothQuadTo(Vector xy)
Smooth quadratic Bezier line to the given relative coordinates.
|
SVGPath |
SVGPath.smoothCubicTo(Vector c2xy,
Vector xy)
Smooth Cubic Bezier line to the given coordinates.
|
SVGPath |
SVGPath.smoothQuadTo(Vector xy)
Smooth quadratic Bezier line to the given coordinates.
|
Modifier and Type | Method and Description |
---|---|
private void |
EMClusterVisualization.Instance.drawArc(SVGPath path,
Vector cent,
Vector pre,
Vector nex,
Vector oPrev,
Vector oNext,
double scale)
Draw an arc to simulate the hyper ellipse.
|
protected void |
EMClusterVisualization.Instance.drawHullArc(String sname,
Vector cent,
Polygon chres)
Approximate the hull using arcs.
|
protected void |
EMClusterVisualization.Instance.drawHullLines(String sname,
Vector cent,
Polygon chres)
Approximate by convex hull.
|
protected void |
EMClusterVisualization.Instance.drawSphere2D(String sname,
Vector cent,
Vector[] pc)
Draw by approximating a sphere via cubic splines
|
protected void |
EMClusterVisualization.Instance.drawSphere2D(String sname,
Vector cent,
Vector[] pc)
Draw by approximating a sphere via cubic splines
|
protected Polygon |
EMClusterVisualization.Instance.makeHull(Vector[] pc)
Build a convex hull to approximate the sphere.
|
protected Polygon |
EMClusterVisualization.Instance.makeHullComplex(Vector[] pc)
Build a convex hull to approximate the sphere.
|
Modifier and Type | Method and Description |
---|---|
private double |
ClusterHullVisualization.Instance.addRecursively(ArrayList<Vector> hull,
Hierarchy<Cluster<Model>> hier,
Cluster<Model> clus)
Recursively add a cluster and its children.
|
Modifier and Type | Field and Description |
---|---|
protected Relation<Vector> |
COPVectorVisualization.Instance.result
The outlier result to visualize
|
Modifier and Type | Method and Description |
---|---|
private void |
MoveObjectsToolVisualization.Instance.updateDB(DBIDs dbids,
Vector movingVector)
Updates the objects with the given DBIDs It will be moved depending on
the given Vector
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.