Modifier and Type | Field and Description |
---|---|
protected ModifiableDBIDs |
SNNClustering.noise
Holds a set of noise.
|
protected ModifiableDBIDs |
DBSCAN.noise
Holds a set of noise.
|
protected ModifiableDBIDs |
SNNClustering.processedIDs
Holds a set of processed ids.
|
protected ModifiableDBIDs |
DBSCAN.processedIDs
Holds a set of processed ids.
|
Modifier and Type | Field and Description |
---|---|
protected List<ModifiableDBIDs> |
SNNClustering.resultList
Holds a list of clusters found.
|
protected List<ModifiableDBIDs> |
DBSCAN.resultList
Holds a list of clusters found.
|
Modifier and Type | Method and Description |
---|---|
private void |
DBSCAN.processNeighbors(DBIDIter neighbor,
ModifiableDBIDs currentCluster,
HashSetModifiableDBIDs seeds)
Process a single core point.
|
Modifier and Type | Field and Description |
---|---|
(package private) ModifiableDBIDs |
ORCLUS.ORCLUSCluster.objectIDs
The ids of the objects belonging to this cluster.
|
private ModifiableDBIDs |
CASH.processedIDs
Holds a set of processed ids.
|
Modifier and Type | Method and Description |
---|---|
private Matrix |
CASH.runDerivator(Relation<ParameterizationFunction> relation,
int dim,
CASHInterval interval,
ModifiableDBIDs ids)
Runs the derivator on the specified interval and assigns all points having
a distance less then the standard deviation of the derivator model to the
model to this model.
|
Modifier and Type | Field and Description |
---|---|
private ModifiableDBIDs |
CASHInterval.ids
Holds the ids of the objects associated with this interval.
|
Modifier and Type | Method and Description |
---|---|
ModifiableDBIDs |
CASHIntervalSplit.determineIDs(DBIDs superSetIDs,
HyperBoundingBox interval,
double d_min,
double d_max)
Determines the ids belonging to the given interval, i.e. the
parameterization functions falling within the interval.
|
ModifiableDBIDs |
CASHInterval.getIDs()
Returns the set of ids of the objects associated with this interval.
|
Constructor and Description |
---|
CASHInterval(double[] min,
double[] max,
CASHIntervalSplit split,
ModifiableDBIDs ids,
int maxSplitDimension,
int level,
double d_min,
double d_max)
Provides a unique interval represented by its id, a hyper bounding box and
a set of objects ids associated with this interval.
|
Modifier and Type | Field and Description |
---|---|
protected ModifiableDBIDs |
HDBSCANHierarchyExtraction.TempCluster.members
New ids, not yet in child clusters.
|
protected ModifiableDBIDs |
SimplifiedHierarchyExtraction.TempCluster.newids
New ids, not yet in child clusters.
|
Modifier and Type | Method and Description |
---|---|
protected boolean |
KMedoidsEM.assignToNearestCluster(ArrayDBIDs means,
Mean[] mdist,
List<? extends ModifiableDBIDs> clusters,
DistanceQuery<V> distQ)
Returns a list of clusters.
|
protected boolean |
AbstractKMeans.assignToNearestCluster(Relation<? extends V> relation,
List<? extends NumberVector> means,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] varsum)
Returns a list of clusters.
|
protected boolean |
KMeansBatchedLloyd.assignToNearestCluster(Relation<V> relation,
DBIDs ids,
List<? extends NumberVector> oldmeans,
double[][] meanshift,
int[] changesize,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] varsum)
Returns a list of clusters.
|
private int |
KMeansElkan.assignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] sep,
double[][] cdist,
WritableDoubleDataStore upper,
WritableDataStore<double[]> lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansHamerly.assignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] sep,
WritableDoubleDataStore upper,
WritableDoubleDataStore lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansElkan.initialAssignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
WritableDoubleDataStore upper,
WritableDataStore<double[]> lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansHamerly.initialAssignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
WritableDoubleDataStore upper,
WritableDoubleDataStore lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
protected boolean |
AbstractKMeans.macQueenIterate(Relation<V> relation,
List<Vector> means,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] varsum)
Perform a MacQueen style iteration.
|
protected boolean |
KMeansBatchedLloyd.updateAssignment(DBIDIter id,
V fv,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[][] meanshift,
int[] changesize,
int minIndex)
Update the assignment of a single object.
|
private boolean |
AbstractKMeans.updateMeanAndAssignment(List<ModifiableDBIDs> clusters,
List<Vector> means,
int minIndex,
V fv,
DBIDIter iditer,
WritableIntegerDataStore assignment)
Try to update the cluster assignment.
|
protected void |
KMeansBatchedLloyd.updateMeans(List<Vector> means,
double[][] meanshift,
List<ModifiableDBIDs> clusters,
int[] changesize)
Merge changes into mean vectors.
|
Modifier and Type | Field and Description |
---|---|
(package private) ModifiableDBIDs |
FastOPTICS.processed
processed points
|
(package private) ModifiableDBIDs |
OPTICSList.Instance.processedIDs
Holds a set of processed ids.
|
private ModifiableDBIDs |
OPTICSHeap.Instance.processedIDs
Holds a set of processed ids.
|
protected ModifiableDBIDs |
GeneralizedOPTICS.Instance.processedIDs
Holds a set of processed ids.
|
Modifier and Type | Field and Description |
---|---|
ModifiableDBIDs |
P3C.ClusterCandidate.ids
Objects contained in cluster.
|
(package private) ModifiableDBIDs |
PROCLUS.PROCLUSCluster.objectIDs
The ids of the objects belonging to this cluster.
|
Modifier and Type | Method and Description |
---|---|
private List<Pair<Subspace,ModifiableDBIDs>> |
CLIQUE.determineClusters(List<CLIQUESubspace<V>> denseSubspaces)
Determines the clusters in the specified dense subspaces.
|
Modifier and Type | Method and Description |
---|---|
private void |
P3C.assignUnassigned(Relation<V> relation,
WritableDataStore<double[]> probClusterIGivenX,
List<MultivariateGaussianModel> models,
ModifiableDBIDs unassigned)
Assign unassigned objects to best candidate based on shortest Mahalanobis
distance.
|
private void |
P3C.computeFuzzyMembership(Relation<V> relation,
ArrayList<P3C.Signature> clusterCores,
ModifiableDBIDs unassigned,
WritableDataStore<double[]> probClusterIGivenX,
List<MultivariateGaussianModel> models,
int dim)
Computes a fuzzy membership with the weights based on which cluster cores
each data point is part of.
|
private void |
P3C.findOutliers(Relation<V> relation,
List<MultivariateGaussianModel> models,
ArrayList<P3C.ClusterCandidate> clusterCandidates,
ModifiableDBIDs noise)
Performs outlier detection by testing the Mahalanobis distance of each
point in a cluster against the critical value of the ChiSquared
distribution with as many degrees of freedom as the cluster has relevant
attributes.
|
Constructor and Description |
---|
PROCLUS.PROCLUSCluster(ModifiableDBIDs objectIDs,
long[] dimensions,
Vector centroid)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private ModifiableDBIDs |
CLIQUEUnit.ids
The ids of the feature vectors this unit contains.
|
Modifier and Type | Method and Description |
---|---|
List<Pair<Subspace,ModifiableDBIDs>> |
CLIQUESubspace.determineClusters()
Determines all clusters in this subspace by performing a depth-first search
algorithm to find connected dense units.
|
Modifier and Type | Method and Description |
---|---|
void |
CLIQUESubspace.dfs(CLIQUEUnit<V> unit,
ModifiableDBIDs cluster,
CLIQUESubspace<V> model)
Depth-first search algorithm to find connected dense units in this subspace
that build a cluster.
|
Constructor and Description |
---|
CLIQUEUnit(ArrayList<CLIQUEInterval> intervals,
ModifiableDBIDs ids)
Creates a new k-dimensional unit for the given intervals.
|
Modifier and Type | Method and Description |
---|---|
protected boolean |
UKMeans.assignToNearestCluster(Relation<DiscreteUncertainObject> relation,
List<Vector> means,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] varsum)
Returns a list of clusters.
|
protected List<Vector> |
UKMeans.means(List<? extends ModifiableDBIDs> clusters,
List<? extends NumberVector> means,
Relation<DiscreteUncertainObject> database)
Returns the mean vectors of the given clusters in the given database.
|
protected boolean |
UKMeans.updateAssignment(DBIDIter iditer,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
int newA)
Update the cluster assignment.
|
Modifier and Type | Method and Description |
---|---|
private void |
DWOF.clusterData(DBIDs ids,
RangeQuery<O> rnnQuery,
WritableDoubleDataStore radii,
WritableDataStore<ModifiableDBIDs> labels)
This method applies a density based clustering algorithm.
|
private int |
DWOF.updateSizes(DBIDs ids,
WritableDataStore<ModifiableDBIDs> labels,
WritableIntegerDataStore newSizes)
This method updates each object's cluster size after the clustering step.
|
Modifier and Type | Method and Description |
---|---|
protected void |
INFLO.computeINFLO(Relation<O> relation,
ModifiableDBIDs pruned,
WritableDataStore<ModifiableDBIDs> knns,
WritableDataStore<ModifiableDBIDs> rnns,
WritableDoubleDataStore density,
WritableDoubleDataStore inflos,
DoubleMinMax inflominmax)
Compute the final INFLO scores.
|
protected void |
INFLO.computeNeighborhoods(Relation<O> relation,
KNNQuery<O> knnQuery,
ModifiableDBIDs pruned,
WritableDataStore<ModifiableDBIDs> knns,
WritableDataStore<ModifiableDBIDs> rnns,
WritableDoubleDataStore density)
Compute neighborhoods
|
Modifier and Type | Method and Description |
---|---|
private void |
EvaluateRetrievalPerformance.findMatches(ModifiableDBIDs posn,
Relation<?> lrelation,
Object label)
Find all matching objects.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ArrayModifiableDBIDs
Array-oriented implementation of a modifiable DBID collection.
|
interface |
HashSetModifiableDBIDs
Set-oriented implementation of a modifiable DBID collection.
|
Modifier and Type | Method and Description |
---|---|
static ModifiableDBIDs |
DBIDUtil.difference(DBIDs ids1,
DBIDs ids2)
Returns the difference of the two specified collection of IDs.
|
static ModifiableDBIDs |
DBIDUtil.ensureModifiable(DBIDs ids)
Ensure modifiable.
|
static ModifiableDBIDs |
DBIDUtil.intersection(DBIDs first,
DBIDs second)
Compute the set intersection of two sets.
|
static ModifiableDBIDs |
DBIDUtil.randomSample(DBIDs source,
int k,
int seed)
Produce a random sample of the given DBIDs.
|
static ModifiableDBIDs |
DBIDUtil.randomSample(DBIDs source,
int k,
Long seed)
Produce a random sample of the given DBIDs.
|
static ModifiableDBIDs |
DBIDUtil.randomSample(DBIDs source,
int k,
Random random)
Produce a random sample of the given DBIDs.
|
static ModifiableDBIDs |
DBIDUtil.randomSample(DBIDs source,
int k,
RandomFactory rnd)
Produce a random sample of the given DBIDs.
|
static ModifiableDBIDs |
DBIDUtil.union(DBIDs ids1,
DBIDs ids2)
Returns the union of the two specified collection of IDs.
|
Modifier and Type | Class and Description |
---|---|
(package private) class |
ArrayModifiableIntegerDBIDs
Class using a primitive int[] array as storage.
|
(package private) class |
TroveHashSetModifiableDBIDs
Implementation using GNU Trove Int Hash Sets.
|
Modifier and Type | Method and Description |
---|---|
private long[] |
DiSHPreferenceVectorIndex.determinePreferenceVector(Relation<V> relation,
ModifiableDBIDs[] neighborIDs,
StringBuilder msg)
Determines the preference vector according to the specified neighbor ids.
|
private long[] |
DiSHPreferenceVectorIndex.determinePreferenceVectorByApriori(Relation<V> relation,
ModifiableDBIDs[] neighborIDs,
StringBuilder msg)
Determines the preference vector with the apriori strategy.
|
private long[] |
DiSHPreferenceVectorIndex.determinePreferenceVectorByMaxIntersection(ModifiableDBIDs[] neighborIDs,
StringBuilder msg)
Determines the preference vector with the max intersection strategy.
|
private int |
DiSHPreferenceVectorIndex.maxIntersection(Map<Integer,ModifiableDBIDs> candidates,
DBIDs set,
ModifiableDBIDs result)
Returns the index of the set having the maximum intersection set with the
specified set contained in the specified map.
|
Modifier and Type | Method and Description |
---|---|
private int |
DiSHPreferenceVectorIndex.max(Map<Integer,ModifiableDBIDs> candidates)
Returns the set with the maximum size contained in the specified map.
|
private int |
DiSHPreferenceVectorIndex.maxIntersection(Map<Integer,ModifiableDBIDs> candidates,
DBIDs set,
ModifiableDBIDs result)
Returns the index of the set having the maximum intersection set with the
specified set contained in the specified map.
|
Modifier and Type | Method and Description |
---|---|
private void |
MkAppTree.leafEntryIDs(MkAppTreeNode<O> node,
ModifiableDBIDs result)
Determines the ids of the leaf entries stored in the specified subtree.
|
Modifier and Type | Method and Description |
---|---|
private void |
MkCoPTree.doReverseKNNQuery(int k,
DBIDRef q,
ModifiableDoubleDBIDList result,
ModifiableDBIDs candidates)
Performs a reverse knn query.
|
Modifier and Type | Field and Description |
---|---|
protected ModifiableDBIDs |
SegmentsStylingPolicy.unselectedObjects
Not selected IDs that will be drawn in default colors.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.