
O - the type of Object the algorithm is applied to@Title(value="DBSCAN: Density-Based Clustering of Applications with Noise") @Description(value="Algorithm to find density-connected sets in a database based on the parameters \'minpts\' and \'epsilon\' (specifying a volume). These two parameters determine a density threshold for clustering.") @Reference(authors="M. Ester, H.-P. Kriegel, J. Sander, X. Xu", title="A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise", booktitle="Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD \'96), Portland, OR, 1996", url="http://www.aaai.org/Papers/KDD/1996/KDD96-037") public class DBSCAN<O> extends AbstractDistanceBasedAlgorithm<O,Clustering<Model>> implements ClusteringAlgorithm<Clustering<Model>>
Reference:
M. Ester, H.-P. Kriegel, J. Sander, X. Xu
A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases
with Noise
In Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD '96),
Portland, OR, 1996.
| Modifier and Type | Class and Description |
|---|---|
static class |
DBSCAN.Parameterizer<O>
Parameterization class.
|
| Modifier and Type | Field and Description |
|---|---|
protected double |
epsilon
Holds the epsilon radius threshold.
|
private static Logging |
LOG
The logger for this class.
|
protected int |
minpts
Holds the minimum cluster size.
|
protected long |
ncounter
Number of neighbors.
|
protected ModifiableDBIDs |
noise
Holds a set of noise.
|
protected ModifiableDBIDs |
processedIDs
Holds a set of processed ids.
|
protected List<ModifiableDBIDs> |
resultList
Holds a list of clusters found.
|
DISTANCE_FUNCTION_ID| Constructor and Description |
|---|
DBSCAN(DistanceFunction<? super O> distanceFunction,
double epsilon,
int minpts)
Constructor with parameters.
|
| Modifier and Type | Method and Description |
|---|---|
protected void |
expandCluster(Relation<O> relation,
RangeQuery<O> rangeQuery,
DBIDRef startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
DBSCAN-function expandCluster.
|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.
|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
private void |
processNeighbors(DBIDIter neighbor,
ModifiableDBIDs currentCluster,
HashSetModifiableDBIDs seeds)
Process a single core point.
|
Clustering<Model> |
run(Relation<O> relation)
Performs the DBSCAN algorithm on the given database.
|
protected void |
runDBSCAN(Relation<O> relation,
RangeQuery<O> rangeQuery)
Run the DBSCAN algorithm
|
getDistanceFunctionmakeParameterDistanceFunction, runclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
protected double epsilon
protected int minpts
protected List<ModifiableDBIDs> resultList
protected ModifiableDBIDs noise
protected ModifiableDBIDs processedIDs
protected long ncounter
public DBSCAN(DistanceFunction<? super O> distanceFunction, double epsilon, int minpts)
distanceFunction - Distance functionepsilon - Epsilon valueminpts - Minpts parameterpublic Clustering<Model> run(Relation<O> relation)
protected void runDBSCAN(Relation<O> relation, RangeQuery<O> rangeQuery)
relation - Data relationrangeQuery - Range query classprotected void expandCluster(Relation<O> relation, RangeQuery<O> rangeQuery, DBIDRef startObjectID, FiniteProgress objprog, IndefiniteProgress clusprog)
relation - Database relation to run onrangeQuery - Range query to usestartObjectID - potential seed of a new potential clusterobjprog - the progress object for logging the current statusprivate void processNeighbors(DBIDIter neighbor, ModifiableDBIDs currentCluster, HashSetModifiableDBIDs seeds)
neighbor - Iterator over neighborscurrentCluster - Current clusterseeds - Seed setpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithmgetInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<Clustering<Model>>protected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<Clustering<Model>>Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.