A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

K

k - Variable in class de.lmu.ifi.dbs.elki.algorithm.benchmark.KNNBenchmarkAlgorithm
Number of neighbors to retrieve.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.benchmark.KNNBenchmarkAlgorithm.Parameterizer
K parameter
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.benchmark.ValidateApproximativeKNNIndex
Number of neighbors to retrieve.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.benchmark.ValidateApproximativeKNNIndex.Parameterizer
K parameter
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.EM
Number of clusters
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.EM.Parameterizer
Number of clusters.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.AbstractKMeans
Holds the value of KMeans.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.AbstractKMeans.Parameterizer
k Parameter.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansBisecting
Desired value of k.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansBisecting.Parameterizer
Desired number of clusters.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsEM
Holds the value of KMeans.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsEM.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsPAM
Holds the value of KMeans.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsPAM.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional.KNNKernelDensityMinimaClustering
Number of neighbors to use for bandwidth.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional.KNNKernelDensityMinimaClustering.Parameterizer
Number of neighbors to use for bandwidth.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder
Holds the value of KNNDistanceOrder.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder.Parameterizer
Parameter k.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.KNNJoin
The k parameter.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.KNNJoin.Parameterizer
K parameter.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.AbstractAggarwalYuOutlier
The target dimensionality.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.AbstractAggarwalYuOutlier.Parameterizer
k Parameter.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.COP
Number of neighbors to be considered.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.COP.Parameterizer
Number of neighbors to be considered.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.DWOF
Holds the value of DWOF.Parameterizer.K_ID i.e.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.DWOF.Parameterizer
Number of neighbors to get
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.FastABOD
Number of nearest neighbors.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.FastABOD.Parameterizer
Number of neighbors.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.HilOut
Number of nearest neighbors
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.HilOut.Parameterizer
Neighborhood size
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier
The parameter k
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier
Holds the value of KNNWeightOutlier.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.INFLO
Holds the value of INFLO.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.INFLO.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDF
Parameter k.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDF.Parameterizer
The neighborhood size to use.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDOF
Holds the value of LDOF.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDOF.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LOF
Holds the value of LOF.Parameterizer.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LOF.Parameterizer
The neighborhood size to use.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.SimpleKernelDensityLOF
Parameter k.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.SimpleKernelDensityLOF.Parameterizer
The neighborhood size to use.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.SimplifiedLOF
Parameter k.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.SimplifiedLOF.Parameterizer
The neighborhood size to use.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.meta.FeatureBagging
The parameters k for LOF.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.meta.FeatureBagging.Parameterizer
The neighborhood size to use.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ODIN
Number of neighbors for kNN graph.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ODIN.Parameterizer
Number of nearest neighbors to use.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ReferenceBasedOutlierDetection
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ReferenceBasedOutlierDetection.Parameterizer
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.SimpleCOP
Number of neighbors to be considered.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.SimpleCOP.Parameterizer
Number of neighbors to be considered.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuGLSBackwardSearchAlgorithm
Parameter k - neighborhood size
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuGLSBackwardSearchAlgorithm.Parameterizer
Parameter k - neighborhood size
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuRandomWalkEC
Parameter k.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuRandomWalkEC.Parameterizer
Parameter for kNN.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.PrecomputedKNearestNeighborNeighborhood.Factory
parameter k
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.PrecomputedKNearestNeighborNeighborhood.Factory.Parameterizer
Parameter k
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.AveragePrecisionAtK
The parameter k - the number of neighbors to retrieve.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.AveragePrecisionAtK.Parameterizer
Neighborhood size.
k - Variable in class de.lmu.ifi.dbs.elki.application.cache.CacheDoubleDistanceKNNLists
Number of neighbors to precompute.
k - Variable in class de.lmu.ifi.dbs.elki.application.cache.CacheDoubleDistanceKNNLists.Parameterizer
Number of neighbors to precompute.
k - Variable in class de.lmu.ifi.dbs.elki.database.ids.generic.DistanceDBIDPairKNNList
The value of k this was materialized for.
k - Variable in class de.lmu.ifi.dbs.elki.database.ids.generic.DoubleDistanceDBIDPairKNNList
The value of k this was materialized for.
k - Variable in class de.lmu.ifi.dbs.elki.database.ids.generic.DoubleDistanceDBIDPairKNNListHeap
The value of k this was materialized for.
k - Variable in class de.lmu.ifi.dbs.elki.database.ids.generic.DoubleDistanceKNNSubList
Parameter k.
k - Variable in class de.lmu.ifi.dbs.elki.database.ids.generic.KNNSubList
Parameter k.
k - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleDistanceIntegerDBIDKNNHeap
k for this heap.
k - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleDistanceIntegerDBIDKNNList
The k value this list was generated for.
k - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleDistanceIntegerDBIDPairKNNListHeap
The value of k this was materialized for.
k - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.transform.NumberVectorRandomFeatureSelectionFilter
Holds the desired cardinality of the subset of attributes selected for projection.
k - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.transform.NumberVectorRandomFeatureSelectionFilter.Parameterizer
Number of attributes to select.
k - Variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance.Instance
Value for k
k - Variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance
The value of k
k - Variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance.Parameterizer
The value of k
k - Variable in class de.lmu.ifi.dbs.elki.index.lsh.hashfamilies.AbstractHashFunctionFamily
The number of projections to use for each hash function.
k - Variable in class de.lmu.ifi.dbs.elki.index.lsh.hashfamilies.AbstractHashFunctionFamily.Parameterizer
The number of projections to use for each hash function.
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor.Factory
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor.Factory.Parameterizer
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor
The query k value.
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex
Query k.
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.HiSCPreferenceVectorIndex.Factory
Holds the value of parameter HiSCPreferenceVectorIndex.Factory.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.HiSCPreferenceVectorIndex.Factory.Parameterizer
Holds the value of parameter HiSCPreferenceVectorIndex.Factory.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.HiSCPreferenceVectorIndex
Holds the value of parameter k.
k - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.GammaDistribution
Alpha == k
k - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.GammaDistribution.Parameterizer
Parameters.
k - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.GeneralizedExtremeValueDistribution
Parameters (location, scale, shape)
k - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.GeneralizedExtremeValueDistribution.Parameterizer
Parameters.
k - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.LogGammaAlternateDistribution
Alpha == k.
k - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.LogGammaAlternateDistribution.Parameterizer
Parameters.
k - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.LogGammaDistribution
Alpha == k.
k - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.LogGammaDistribution.Parameterizer
Parameters.
k - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.WeibullDistribution
Shape parameter k.
k - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.WeibullDistribution.Parameterizer
Parameters.
k - Variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierGammaScaling
Gamma parameter k
k - Variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.TopKOutlierScaling
Number of outliers to keep.
k - Variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.TopKOutlierScaling.Parameterizer
 
k - Variable in class tutorial.clustering.SameSizeKMeansAlgorithm.Parameterizer
k Parameter.
k - Variable in class tutorial.outlier.DistanceStddevOutlier
Number of neighbors to get.
k - Variable in class tutorial.outlier.DistanceStddevOutlier.Parameterizer
Number of neighbors to get
k - Variable in class tutorial.outlier.ODIN
Number of neighbors for kNN graph.
k - Variable in class tutorial.outlier.ODIN.Parameterizer
Number of nearest neighbors to use.
k_0 - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop.ApproximationLine
The start value for k.
k_i - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering
k_i - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering.Parameterizer
 
K_I_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering.Parameterizer
Parameter to specify the multiplier for the initial number of seeds, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.benchmark.KNNBenchmarkAlgorithm.Parameterizer
Parameter for the number of neighbors.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.benchmark.ValidateApproximativeKNNIndex.Parameterizer
Parameter for the number of neighbors.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering.Parameterizer
Parameter to specify the number of clusters to find, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.HiCO
Optional parameter to specify the number of nearest neighbors considered in the PCA, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.EM.Parameterizer
Parameter to specify the number of clusters to find, must be an integer greater than 0.
K_ID - Static variable in interface de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeans
Parameter to specify the number of clusters to find, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional.KNNKernelDensityMinimaClustering.Parameterizer
Number of neighbors for bandwidth estimation.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder
Parameter to specify the distance of the k-distant object to be assessed, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.KNNJoin
Parameter that specifies the k-nearest neighbors to be assigned, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.AbstractAggarwalYuOutlier.Parameterizer
OptionID for the target dimensionality.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.COP.Parameterizer
Parameter to specify the number of nearest neighbors of an object to be considered for computing its COP_SCORE, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.DWOF.Parameterizer
Option ID for the number of neighbors.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.FastABOD.Parameterizer
Parameter for the nearest neighbors.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.HilOut.Parameterizer
Parameter to specify how many next neighbors should be used in the computation
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier
Parameter to specify the k nearest neighbor
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier
Parameter to specify the k nearest neighbor
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.INFLO
Parameter to specify the number of nearest neighbors of an object to be considered for computing its INFLO_SCORE. must be an integer greater than 1.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDF.Parameterizer
Option ID for k
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDOF
Parameter to specify the number of nearest neighbors of an object to be considered for computing its LDOF_SCORE, must be an integer greater than 1.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LOF.Parameterizer
Parameter to specify the number of nearest neighbors of an object to be considered for computing its LOF_SCORE, must be an integer greater than 1.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ODIN.Parameterizer
Parameter for the number of nearest neighbors: -odin.k <int>
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ReferenceBasedOutlierDetection
Parameter to specify the number of nearest neighbors of an object, to be considered for computing its REFOD_SCORE, must be an integer greater than 1.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.SimpleCOP.Parameterizer
Parameter to specify the number of nearest neighbors of an object to be considered for computing its COP_SCORE, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuGLSBackwardSearchAlgorithm.Parameterizer
Parameter to specify the k nearest neighbors
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuRandomWalkEC.Parameterizer
Parameter to specify the number of neighbors.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.PrecomputedKNearestNeighborNeighborhood.Factory.Parameterizer
Parameter k
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.AveragePrecisionAtK.Parameterizer
Parameter k to compute the average precision at.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.application.cache.CacheDoubleDistanceKNNLists.Parameterizer
Parameter that specifies the number of neighbors to precompute.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance
OptionID for the "k" parameter.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor.Factory
Parameter to specify the number of nearest neighbors of an object to be materialized. must be an integer greater than 1.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory
Optional parameter to specify the number of nearest neighbors considered in the PCA, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.HiSCPreferenceVectorIndex.Factory
The number of nearest neighbors considered to determine the preference vector.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp.MkAppTreeFactory
Parameter for k
K_ID - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop.MkCopTreeFactory
Parameter for k
K_ID - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.GammaDistribution.Parameterizer
K parameter.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.TopKOutlierScaling
Parameter to specify the number of outliers to keep Key: -topk.k
K_ID - Static variable in class tutorial.outlier.DistanceStddevOutlier.Parameterizer
Option ID for parameterization.
K_ID - Static variable in class tutorial.outlier.ODIN.Parameterizer
Parameter for the number of nearest neighbors: -odin.k <int>
k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.MkTreeHeader
The maximum number k of reverse kNN queries to be supported.
k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.MkTreeSettings
Holds the maximum value of k to support.
K_MAX_ID - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.AbstractMkTreeUnifiedFactory.Parameterizer
Parameter specifying the maximal number k of reverse k nearest neighbors to be supported, must be an integer greater than 0.
K_MULTIPLIER_ID - Static variable in class de.lmu.ifi.dbs.elki.index.projected.ProjectedIndex.Factory.Parameterizer
Option ID for querying a larger k.
K_S_CRITICAL001 - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.OUTRES
Constant for Kolmogorov-Smirnov at alpha=0.01 (table value)
kappa - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj.PreDeConSubspaceIndex
The kappa value for generating the variance vector.
KAPPA - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.EMClusterVisualization.Instance
 
KappaDistribution - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
Kappa distribution, by Hosking.
KappaDistribution(double, double, double, double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.KappaDistribution
Constructor.
KappaDistribution(double, double, double, double, Random) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.KappaDistribution
Constructor.
KappaDistribution(double, double, double, double, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.KappaDistribution
Constructor.
KappaDistribution.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
Parameterization class
KappaDistribution.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.KappaDistribution.Parameterizer
 
kcomp - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LoOP
Holds the value of LoOP.KCOMP_ID.
kcomp - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LoOP.Parameterizer
Holds the value of LoOP.KCOMP_ID.
KCOMP_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LoOP
Parameter to specify the number of nearest neighbors of an object to be considered for computing its LOOP_SCORE, must be an integer greater than 1.
KDDCLIApplication - Class in de.lmu.ifi.dbs.elki.application
Provides a KDDCLIApplication that can be used to perform any algorithm implementing Algorithm using any DatabaseConnection implementing DatabaseConnection.
KDDCLIApplication(KDDTask) - Constructor for class de.lmu.ifi.dbs.elki.application.KDDCLIApplication
Constructor.
KDDCLIApplication.Parameterizer - Class in de.lmu.ifi.dbs.elki.application
Parameterization class.
KDDCLIApplication.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.application.KDDCLIApplication.Parameterizer
 
KDDTask - Class in de.lmu.ifi.dbs.elki
Provides a KDDTask that can be used to perform any algorithm implementing Algorithm using any DatabaseConnection implementing DatabaseConnection.
KDDTask(InputStep, AlgorithmStep, EvaluationStep, OutputStep, Collection<Pair<Object, Parameter<?>>>) - Constructor for class de.lmu.ifi.dbs.elki.KDDTask
Constructor.
KDDTask.Parameterizer - Class in de.lmu.ifi.dbs.elki
Parameterization class.
KDDTask.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.KDDTask.Parameterizer
 
kdist - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleDistanceIntegerDBIDKNNHeap
Current maximum value.
kdKNNSearch(int, int, int, O, DoubleDistanceKNNHeap, DBIDArrayIter, double) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.kd.MinimalisticMemoryKDTree.KDTreeKNNQuery
Perform a kNN search on the kd-tree.
kdRangeSearch(int, int, int, O, ModifiableDoubleDistanceDBIDList, DBIDArrayIter, double) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.kd.MinimalisticMemoryKDTree.KDTreeRangeQuery
Perform a kNN search on the kd-tree.
kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.NaiveMeanShiftClustering
Density estimation kernel.
kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.NaiveMeanShiftClustering.Parameterizer
Kernel function.
kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional.KNNKernelDensityMinimaClustering
Kernel density function.
kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional.KNNKernelDensityMinimaClustering.Parameterizer
Kernel density function.
kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDF
Kernel density function
kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDF.Parameterizer
Kernel density function parameter
kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.SimpleKernelDensityLOF
Kernel density function
kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.SimpleKernelDensityLOF.Parameterizer
Kernel density function parameter
kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.OUTRES.KernelDensityEstimator
Actual kernel in use
kernel - Variable in class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix
The kernel matrix
KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.BiweightKernelDensityFunction
Static instance.
KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.CosineKernelDensityFunction
Static instance.
KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.EpanechnikovKernelDensityFunction
Static instance.
KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.GaussianKernelDensityFunction
Static instance.
KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.TriangularKernelDensityFunction
Static instance.
KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.TricubeKernelDensityFunction
Static instance.
KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.TriweightKernelDensityFunction
Static instance.
KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.UniformKernelDensityFunction
Static instance.
KERNEL_FUNCTION_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ABOD.Parameterizer
Parameter for the kernel function.
KERNEL_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.NaiveMeanShiftClustering.Parameterizer
Parameter for kernel function.
KERNEL_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional.KNNKernelDensityMinimaClustering.Parameterizer
Kernel function.
KERNEL_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDF.Parameterizer
Option ID for kernel.
KERNEL_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.SimpleKernelDensityLOF.Parameterizer
Option ID for kernel density LOF kernel.
KernelDensityEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics
Estimate density given an array of points.
KernelDensityEstimator(double[], double, double, KernelDensityFunction, int, double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.KernelDensityEstimator
Initialize and execute kernel density estimation.
KernelDensityEstimator(double[], KernelDensityFunction, double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.KernelDensityEstimator
Process an array of data
KernelDensityFunction - Interface in de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions
Inner function of a kernel density estimator.
kernelFunction - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ABOD
Store the configured Kernel version.
kernelFunction - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ABOD.Parameterizer
Distance function.
KernelMatrix - Class in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel
Provides a class for storing the kernel matrix and several extraction methods for convenience.
KernelMatrix(PrimitiveSimilarityFunction<? super O, D>, Relation<? extends O>, DBIDs) - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix
Provides a new kernel matrix.
KernelMatrix(SimilarityQuery<? super O, D>, Relation<? extends O>, DBIDs) - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix
Provides a new kernel matrix.
KernelMatrix(Matrix) - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix
Makes a new kernel matrix from matrix (with data copying).
KernelMatrix.DBIDMap - Interface in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel
Map a DBID to its offset TODO: move to shared code.
KernelMatrix.RangeMap - Class in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel
Map a DBID to an integer offset, DBIDRange version.
KernelMatrix.RangeMap(DBIDRange) - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix.RangeMap
 
KernelMatrix.SortedArrayMap - Class in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel
Map a DBID to an integer offset, Version to support arbitrary DBIDs.
KernelMatrix.SortedArrayMap(DBIDs) - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix.SortedArrayMap
 
key - Variable in class de.lmu.ifi.dbs.elki.logging.statistics.AbstractStatistic
Key to report the statistic with.
key(PlotItem, VisualizationTask) - Method in class de.lmu.ifi.dbs.elki.visualization.gui.overview.LayerMap
Helper function for building a key object
KEY - Static variable in interface de.lmu.ifi.dbs.elki.visualization.style.StyleLibrary
Key
KEY_CAPTION - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.KeyVisualization.Instance
CSS class for key captions.
KEY_ENTRY - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.KeyVisualization.Instance
CSS class for key entries.
KEY_HIERLINE - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.KeyVisualization.Instance
CSS class for hierarchy plot lines
keymap - Variable in class de.lmu.ifi.dbs.elki.datasource.parser.TermFrequencyParser
Map.
keySet() - Method in class de.lmu.ifi.dbs.elki.visualization.gui.overview.RectangleArranger
The item keys contained in the map.
KeyVisualization - Class in de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj
Visualizer, displaying the key for a clustering.
KeyVisualization() - Constructor for class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.KeyVisualization
 
KeyVisualization.Instance - Class in de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj
Instance
KeyVisualization.Instance(VisualizationTask) - Constructor for class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.KeyVisualization.Instance
Constructor.
KMeans<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>> - Interface in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Some constants and options shared among kmeans family algorithms.
KMEANS_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.BestOfMultipleKMeans.Parameterizer
Parameter to specify the kMeans variant.
KMEANS_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansBisecting.Parameterizer
Parameter to specify the kMeans variant.
KMEANS_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.SampleKMeansInitialization.Parameterizer
Parameter to specify the kMeans variant.
KMeansBatchedLloyd<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Provides the k-means algorithm, using Lloyd-style bulk iterations.
KMeansBatchedLloyd(PrimitiveDistanceFunction<NumberVector<?>, D>, int, int, KMeansInitialization<V>, int, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansBatchedLloyd
Constructor.
KMeansBatchedLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Parameterization class.
KMeansBatchedLloyd.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansBatchedLloyd.Parameterizer
 
KMeansBisecting<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
The bisecting k-means algorithm works by starting with an initial partitioning into two clusters, then repeated splitting of the largest cluster to get additional clusters.
KMeansBisecting(int, KMeans<V, D, M>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansBisecting
Constructor.
KMeansBisecting.Parameterizer<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Parameterization class.
KMeansBisecting.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansBisecting.Parameterizer
 
KMEANSBORDER - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.VoronoiVisualization
Generic tags to indicate the type of element.
KMeansHybridLloydMacQueen<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Provides the k-means algorithm, alternating between MacQueen-style incremental processing and Lloyd-Style batch steps.
KMeansHybridLloydMacQueen(PrimitiveDistanceFunction<NumberVector<?>, D>, int, int, KMeansInitialization<V>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansHybridLloydMacQueen
Constructor.
KMeansHybridLloydMacQueen.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Parameterization class.
KMeansHybridLloydMacQueen.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansHybridLloydMacQueen.Parameterizer
 
KMeansInitialization<V> - Interface in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Interface for initializing K-Means
KMeansLloyd<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Provides the k-means algorithm, using Lloyd-style bulk iterations.
KMeansLloyd(PrimitiveDistanceFunction<NumberVector<?>, D>, int, int, KMeansInitialization<V>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansLloyd
Constructor.
KMeansLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Parameterization class.
KMeansLloyd.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansLloyd.Parameterizer
 
KMeansMacQueen<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Provides the k-means algorithm, using MacQueen style incremental updates.
KMeansMacQueen(PrimitiveDistanceFunction<NumberVector<?>, D>, int, int, KMeansInitialization<V>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansMacQueen
Constructor.
KMeansMacQueen.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Parameterization class.
KMeansMacQueen.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansMacQueen.Parameterizer
 
KMeansModel<V extends NumberVector<?>> - Class in de.lmu.ifi.dbs.elki.data.model
Trivial subclass of the MeanModel that indicates the clustering to be produced by k-means (so the Voronoi cell visualization is sensible).
KMeansModel(V) - Constructor for class de.lmu.ifi.dbs.elki.data.model.KMeansModel
Constructor with mean.
KMeansPlusPlusInitialMeans<V,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
K-Means++ initialization for k-means.
KMeansPlusPlusInitialMeans(RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansPlusPlusInitialMeans
Constructor.
KMeansPlusPlusInitialMeans.Parameterizer<V,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Parameterization class.
KMeansPlusPlusInitialMeans.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansPlusPlusInitialMeans.Parameterizer
 
KMeansQualityMeasure<O extends NumberVector<?>,D extends Distance<?>> - Interface in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality
Interface for computing the quality of a K-Means clustering.
kMeansVariant - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.BestOfMultipleKMeans.Parameterizer
Variant of kMeans to use.
kMeansVariant - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansBisecting.Parameterizer
Variant of kMeans
KMediansLloyd<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Provides the k-medians clustering algorithm, using Lloyd-style bulk iterations.
KMediansLloyd(PrimitiveDistanceFunction<NumberVector<?>, D>, int, int, KMeansInitialization<V>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMediansLloyd
Constructor.
KMediansLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Parameterization class.
KMediansLloyd.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMediansLloyd.Parameterizer
 
KMedoidsEM<V,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Provides the k-medoids clustering algorithm, using a "bulk" variation of the "Partitioning Around Medoids" approach.
KMedoidsEM(PrimitiveDistanceFunction<? super V, D>, int, int, KMedoidsInitialization<V>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsEM
Constructor.
KMedoidsEM.Parameterizer<V,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Parameterization class.
KMedoidsEM.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsEM.Parameterizer
 
KMedoidsInitialization<V> - Interface in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Interface for initializing K-Medoids.
KMedoidsPAM<V,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Provides the k-medoids clustering algorithm, using the "Partitioning Around Medoids" approach.
KMedoidsPAM(PrimitiveDistanceFunction<? super V, D>, int, int, KMedoidsInitialization<V>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsPAM
Constructor.
KMedoidsPAM.Parameterizer<V,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
Parameterization class.
KMedoidsPAM.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsPAM.Parameterizer
 
KMLOutputHandler - Class in de.lmu.ifi.dbs.elki.result
Class to handle KML output.
KMLOutputHandler(File, OutlierScalingFunction, boolean, boolean) - Constructor for class de.lmu.ifi.dbs.elki.result.KMLOutputHandler
Constructor.
KMLOutputHandler.Parameterizer - Class in de.lmu.ifi.dbs.elki.result
Parameterization class
KMLOutputHandler.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.result.KMLOutputHandler.Parameterizer
 
kmulti - Variable in class de.lmu.ifi.dbs.elki.index.projected.ProjectedIndex.Factory
Multiplier for k.
kmulti - Variable in class de.lmu.ifi.dbs.elki.index.projected.ProjectedIndex.Factory.Parameterizer
Multiplier for k.
kmulti - Variable in class de.lmu.ifi.dbs.elki.index.projected.ProjectedIndex
Multiplier for k.
knn - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.SOD
Neighborhood size.
knn - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.SOD.Parameterizer
Neighborhood size
KNN_CACHE_MAGIC - Static variable in class de.lmu.ifi.dbs.elki.application.cache.CacheDoubleDistanceKNNLists
Magic number to identify files.
KNN_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.SOD.Parameterizer
Parameter to specify the number of shared nearest neighbors to be considered for learning the subspace properties., must be an integer greater than 0.
KNNBenchmarkAlgorithm<O,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.benchmark
Benchmarking algorithm that computes the k nearest neighbors for each query point.
KNNBenchmarkAlgorithm(DistanceFunction<? super O, D>, int, DatabaseConnection, double, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.benchmark.KNNBenchmarkAlgorithm
Constructor.
KNNBenchmarkAlgorithm.Parameterizer<O,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.benchmark
Parameterization class
KNNBenchmarkAlgorithm.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.benchmark.KNNBenchmarkAlgorithm.Parameterizer
 
KNNChangeEvent - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
Encapsulates information describing changes of the k nearest neighbors (kNNs) of some objects due to insertion or removal of objects.
KNNChangeEvent(Object, KNNChangeEvent.Type, DBIDs, DBIDs) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.knn.KNNChangeEvent
Used to create an event when kNNs of some objects have been changed.
KNNChangeEvent.Type - Enum in de.lmu.ifi.dbs.elki.index.preprocessed.knn
Available event types.
KNNChangeEvent.Type() - Constructor for enum de.lmu.ifi.dbs.elki.index.preprocessed.knn.KNNChangeEvent.Type
 
KNNDIST - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.DistanceFunctionVisualization.Instance
 
knndistance - Variable in class de.lmu.ifi.dbs.elki.database.ids.generic.DistanceDBIDPairKNNHeap
Cached distance to k nearest neighbor (to avoid going through AbstractKNNHeap.peek() each time).
knndistance - Variable in class de.lmu.ifi.dbs.elki.database.ids.generic.DoubleDistanceDBIDPairKNNHeap
Cached distance to k nearest neighbor (to avoid going through AbstractKNNHeap.peek() too often).
knnDistance - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxDirectoryEntry
The aggregated k-nearest neighbor distance of the underlying MkMax-Tree node.
knnDistance - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxLeafEntry
The k-nearest neighbor distance of the underlying data object.
kNNDistance() - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxTreeNode
Determines and returns the k-nearest neighbor distance of this node as the maximum of the k-nearest neighbor distances of all entries.
kNNdistanceAdjustment(E, Map<DBID, KNNList<D>>) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.AbstractMkTreeUnified
Performs a distance adjustment in the subtree of the specified root entry.
kNNdistanceAdjustment(MkMaxEntry, Map<DBID, KNNList<D>>) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxTree
Adjusts the knn distance in the subtree of the specified root entry.
kNNdistanceAdjustment(MkTabEntry, Map<DBID, KNNList<D>>) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTree
 
knnDistanceApproximation() - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp.MkAppTreeNode
Determines and returns the polynomial approximation for the knn distances of this node as the maximum of the polynomial approximations of all entries.
KNNDistanceOrder<O,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm
Provides an order of the kNN-distances for all objects within the database.
KNNDistanceOrder(DistanceFunction<O, D>, int, double) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder
Constructor.
KNNDistanceOrder.Parameterizer<O,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm
Parameterization class.
KNNDistanceOrder.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder.Parameterizer
Constructor.
KNNDistanceOrderResult<D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.result
Wraps a list containing the knn distances.
KNNDistanceOrderResult(String, String, List<D>) - Constructor for class de.lmu.ifi.dbs.elki.result.KNNDistanceOrderResult
Construct result
knnDistances - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabDirectoryEntry
The aggregated knn distances of the underlying node.
knnDistances - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabLeafEntry
The knn distances of the underlying data object.
knnDistances(O) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTreeIndex
Returns the knn distance of the object with the specified id.
kNNDistances() - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTreeNode
Determines and returns the knn distance of this node as the maximum knn distance of all entries.
knnDistances - Variable in class de.lmu.ifi.dbs.elki.result.KNNDistanceOrderResult
Store the kNN Distances
KNNHeap<D extends Distance<D>> - Interface in de.lmu.ifi.dbs.elki.database.ids.distance
Interface for kNN heaps.
KNNIndex<O> - Interface in de.lmu.ifi.dbs.elki.index
Index with support for kNN queries.
knnJoin - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.DeLiClu
Holds the knnJoin algorithm.
KNNJoin<V extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry> - Class in de.lmu.ifi.dbs.elki.algorithm
Joins in a given spatial database to each object its k-nearest neighbors.
KNNJoin(DistanceFunction<? super V, D>, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.KNNJoin
Constructor.
KNNJoin.Parameterizer<V extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry> - Class in de.lmu.ifi.dbs.elki.algorithm
Parameterization class.
KNNJoin.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.KNNJoin.Parameterizer
 
KNNJoin.Task - Class in de.lmu.ifi.dbs.elki.algorithm
Task in the processing queue.
KNNJoin.Task(D, int, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.KNNJoin.Task
Constructor.
KNNJoinMaterializeKNNPreprocessor<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
Class to materialize the kNN using a spatial join on an R-tree.
KNNJoinMaterializeKNNPreprocessor(Relation<V>, DistanceFunction<? super V, D>, int) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.knn.KNNJoinMaterializeKNNPreprocessor
Constructor.
KNNJoinMaterializeKNNPreprocessor.Factory<O extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
The parameterizable factory.
KNNJoinMaterializeKNNPreprocessor.Factory(int, DistanceFunction<? super O, D>) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.knn.KNNJoinMaterializeKNNPreprocessor.Factory
Constructor.
KNNJoinMaterializeKNNPreprocessor.Factory.Parameterizer<O extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
Parameterization class
KNNJoinMaterializeKNNPreprocessor.Factory.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.knn.KNNJoinMaterializeKNNPreprocessor.Factory.Parameterizer
 
KNNKernelDensityMinimaClustering<V extends NumberVector<?>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional
Cluster one-dimensional data by splitting the data set on local minima after performing kernel density estimation.
KNNKernelDensityMinimaClustering(int, KernelDensityFunction, KNNKernelDensityMinimaClustering.Mode, int, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional.KNNKernelDensityMinimaClustering
Constructor.
KNNKernelDensityMinimaClustering.Mode - Enum in de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional
Estimation mode.
KNNKernelDensityMinimaClustering.Mode() - Constructor for enum de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional.KNNKernelDensityMinimaClustering.Mode
 
KNNKernelDensityMinimaClustering.Parameterizer<V extends NumberVector<?>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional
Parameterization class.
KNNKernelDensityMinimaClustering.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional.KNNKernelDensityMinimaClustering.Parameterizer
 
KNNList<D extends Distance<D>> - Interface in de.lmu.ifi.dbs.elki.database.ids.distance
Interface for kNN results.
KNNListener - Interface in de.lmu.ifi.dbs.elki.index.preprocessed.knn
Listener interface invoked when the k nearest neighbors (kNNs) of some objects have been changed due to insertion or removals of objects.
KNNMARKER - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.DistanceFunctionVisualization.Instance
Generic tags to indicate the type of element.
KNNOutlier<O,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier
Outlier Detection based on the distance of an object to its k nearest neighbor.
KNNOutlier(DistanceFunction<? super O, D>, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier
Constructor for a single kNN query.
KNNOutlier.Parameterizer<O,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier
Parameterization class.
KNNOutlier.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier.Parameterizer
 
knnq - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.AbstractMkTree
Internal class for performing knn queries
knnQueries - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.AbstractMTree.Statistics
For counting the number of knn queries answered.
knnQueries - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.AbstractRStarTree.Statistics
For counting the number of knn queries answered.
KNNQuery<O,D extends Distance<D>> - Interface in de.lmu.ifi.dbs.elki.database.query.knn
The interface of an actual instance.
knnQuery - Variable in class de.lmu.ifi.dbs.elki.database.query.rknn.LinearScanRKNNQuery
KNN query we use.
knnQuery - Variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance.Instance
KNN query instance
knnQuery - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.MaterializeKNNPreprocessor
KNNQuery instance to use.
knnQuery - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex
The kNN query instance we use.
KNNQUERY_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier
The kNN query used.
KNNQUERY_ID - Static variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance
OptionID for the KNN query class to use (preprocessor, approximation, ...)
KNNQueryFilteredPCAIndex<NV extends NumberVector<?>> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
Provides the local neighborhood to be considered in the PCA as the k nearest neighbors of an object.
KNNQueryFilteredPCAIndex(Relation<NV>, PCAFilteredRunner<NV>, KNNQuery<NV, DoubleDistance>, int) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex
Constructor.
KNNQueryFilteredPCAIndex.Factory<V extends NumberVector<?>> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
Factory class.
KNNQueryFilteredPCAIndex.Factory(DistanceFunction<V, DoubleDistance>, PCAFilteredRunner<V>, Integer) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory
Constructor.
KNNQueryFilteredPCAIndex.Factory.Parameterizer<NV extends NumberVector<?>> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
Parameterization class.
KNNQueryFilteredPCAIndex.Factory.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory.Parameterizer
 
kNNReach - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF.LOFResult
The kNN query w.r.t. the reachability distance.
kNNRefer - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF.LOFResult
The kNN query w.r.t. the reference neighborhood distance.
kNNsChanged(KNNChangeEvent) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.OnlineLOF.LOFKNNListener
 
kNNsChanged(KNNChangeEvent, KNNChangeEvent) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.OnlineLOF.LOFKNNListener
Invoked after the events of both preprocessors have been received, i.e.
kNNsChanged(KNNChangeEvent) - Method in interface de.lmu.ifi.dbs.elki.index.preprocessed.knn.KNNListener
Invoked after kNNs have been updated, inserted or removed in some way.
kNNsInserted(DBIDs, DBIDs, DBIDs, FlexibleLOF.LOFResult<O, D>) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.OnlineLOF.LOFKNNListener
Invoked after kNNs have been inserted and updated, updates the result.
kNNsRemoved(DBIDs, DBIDs, DBIDs, FlexibleLOF.LOFResult<O, D>) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.OnlineLOF.LOFKNNListener
Invoked after kNNs have been removed and updated, updates the result.
KNNSubList<D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.database.ids.generic
Sublist of an existing result to contain only the first k elements.
KNNSubList(KNNList<D>, int) - Constructor for class de.lmu.ifi.dbs.elki.database.ids.generic.KNNSubList
Constructor.
KNNSubList.Itr - Class in de.lmu.ifi.dbs.elki.database.ids.generic
Iterator for the sublist.
KNNSubList.Itr() - Constructor for class de.lmu.ifi.dbs.elki.database.ids.generic.KNNSubList.Itr
 
KNNWeightOutlier<O,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier
Outlier Detection based on the accumulated distances of a point to its k nearest neighbors.
KNNWeightOutlier(DistanceFunction<? super O, D>, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier
Constructor with parameters.
KNNWeightOutlier.Parameterizer<O,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier
Parameterization class.
KNNWeightOutlier.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier.Parameterizer
 
KolmogorovSmirnovDistanceFunction - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.histogram
Distance function based on the Kolmogorov-Smirnov goodness of fit test.
KolmogorovSmirnovDistanceFunction() - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.histogram.KolmogorovSmirnovDistanceFunction
Deprecated.
Use static instance!
KolmogorovSmirnovDistanceFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.histogram
Parameterization class, using the static instance.
KolmogorovSmirnovDistanceFunction.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.histogram.KolmogorovSmirnovDistanceFunction.Parameterizer
 
KolmogorovSmirnovTest - Class in de.lmu.ifi.dbs.elki.math.statistics.tests
Kolmogorov-Smirnov test.
KolmogorovSmirnovTest() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.tests.KolmogorovSmirnovTest
Constructor.
KolmogorovSmirnovTest.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.tests
Parameterizer, to use the static instance.
KolmogorovSmirnovTest.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.tests.KolmogorovSmirnovTest.Parameterizer
 
kreach - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF
Number of neighbors used for reachability distance.
kreach - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF.Parameterizer
The set size to use for reachability distance.
kreach - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LoOP
Holds the value of LoOP.KREACH_ID.
kreach - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LoOP.Parameterizer
Holds the value of LoOP.KREACH_ID.
KREACH_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF.Parameterizer
Parameter to specify the number of nearest neighbors of an object to be considered for computing its reachability distance.
KREACH_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LoOP
Parameter to specify the number of nearest neighbors of an object to be considered for computing its LOOP_SCORE, must be an integer greater than 1.
KREF_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF.Parameterizer
Parameter to specify the number of nearest neighbors of an object to be considered for computing its LOF_SCORE, must be an integer greater than 1.
krefer - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF
Number of neighbors in comparison set.
krefer - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF.Parameterizer
The reference set size to use.
Kulczynski1DistanceFunction - Class in de.lmu.ifi.dbs.elki.distance.distancefunction
Kulczynski similarity 1, in distance form.
Kulczynski1DistanceFunction() - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.Kulczynski1DistanceFunction
Deprecated.
Kulczynski1DistanceFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.distancefunction
Parameterization class.
Kulczynski1DistanceFunction.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.Kulczynski1DistanceFunction.Parameterizer
 
Kulczynski1SimilarityFunction - Class in de.lmu.ifi.dbs.elki.distance.similarityfunction
Kulczynski similarity 1.
Kulczynski1SimilarityFunction() - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.Kulczynski1SimilarityFunction
Deprecated.
Kulczynski1SimilarityFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.similarityfunction
Parameterization class.
Kulczynski1SimilarityFunction.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.Kulczynski1SimilarityFunction.Parameterizer
 
Kulczynski2SimilarityFunction - Class in de.lmu.ifi.dbs.elki.distance.similarityfunction
Kulczynski similarity 2.
Kulczynski2SimilarityFunction() - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.Kulczynski2SimilarityFunction
Deprecated.
Kulczynski2SimilarityFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.similarityfunction
Parameterization class.
Kulczynski2SimilarityFunction.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.Kulczynski2SimilarityFunction.Parameterizer
 
KullbackLeiblerDivergenceAsymmetricDistanceFunction - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic
Kullback-Leibler (asymmetric!)
KullbackLeiblerDivergenceAsymmetricDistanceFunction() - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.KullbackLeiblerDivergenceAsymmetricDistanceFunction
Deprecated.
Use static instance!
KullbackLeiblerDivergenceAsymmetricDistanceFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic
Parameterization class, using the static instance.
KullbackLeiblerDivergenceAsymmetricDistanceFunction.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.KullbackLeiblerDivergenceAsymmetricDistanceFunction.Parameterizer
 
KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic
Kullback-Leibler (asymmetric!)
KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction() - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction
Deprecated.
Use static instance!
KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic
Parameterization class, using the static instance.
KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction.Parameterizer
 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Release 0.6.0 (2014-01-10_1610)