Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.benchmark |
Benchmarking pseudo algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation |
Affinity Propagation (AP) clustering.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical | |
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
Spatial outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood |
Spatial outlier neighborhood classes
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data
(e.g. compute distributions, distance distributions etc.)
|
de.lmu.ifi.dbs.elki.application.cache |
Utility applications for the persistence layer such as distance cache builders.
|
de.lmu.ifi.dbs.elki.application.greedyensemble |
Greedy ensembles for outlier detection.
|
de.lmu.ifi.dbs.elki.database |
ELKI database layer - loading, storing, indexing and accessing data
|
de.lmu.ifi.dbs.elki.database.query.distance |
Prepared queries for distances.
|
de.lmu.ifi.dbs.elki.distance | |
de.lmu.ifi.dbs.elki.distance.distancefunction |
Distance functions for use within ELKI.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter |
Distance functions deriving distances from e.g. similarity measures
|
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.external |
Distance functions using external data sources.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.geo |
Geographic (earth) distance functions.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.histogram |
Distance functions for one-dimensional histograms.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski |
Minkowski space L_p norms such as the popular Euclidean and Manhattan distances.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic |
Distance from probability theory, mostly divergences such as K-L-divergence, J-divergence.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.strings |
Distance functions for strings.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
Distance functions based on subspaces.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries |
Distance functions designed for time series.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction |
Similarity functions.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
Kernel functions.
|
de.lmu.ifi.dbs.elki.evaluation.similaritymatrix |
Render a distance matrix to visualize a clustering-distance-combination.
|
de.lmu.ifi.dbs.elki.index.lsh.hashfamilies |
Hash function families for LSH.
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
Index using a preprocessed local PCA.
|
de.lmu.ifi.dbs.elki.index.preprocessed.snn |
Indexes providing nearest neighbor sets
|
de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj |
Index using a preprocessed local subspaces.
|
de.lmu.ifi.dbs.elki.index.tree.metrical |
Tree-based index structures for metrical vector spaces.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants |
M-Tree and variants.
|
de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters |
Classes for various typed parameters.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
tutorial.distancefunction |
Classes from the tutorial on implementing distance functions.
|
tutorial.outlier |
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<? super O,D> |
AbstractDistanceBasedAlgorithm.distanceFunction
Holds the instance of the distance function specified by
DistanceBasedAlgorithm.DISTANCE_FUNCTION_ID . |
protected DistanceFunction<O,D> |
AbstractDistanceBasedAlgorithm.Parameterizer.distanceFunction
The distance function to use.
|
Modifier and Type | Method and Description |
---|---|
static <F extends DistanceFunction<?,?>> |
AbstractAlgorithm.makeParameterDistanceFunction(Class<?> defaultDistanceFunction,
Class<?> restriction)
Make a default distance function configuration option.
|
Modifier and Type | Method and Description |
---|---|
DistanceFunction<? super O,D> |
DistanceBasedAlgorithm.getDistanceFunction()
Returns the distanceFunction.
|
DistanceFunction<? super O,D> |
AbstractDistanceBasedAlgorithm.getDistanceFunction()
Returns the distanceFunction.
|
Constructor and Description |
---|
AbstractDistanceBasedAlgorithm(DistanceFunction<? super O,D> distanceFunction)
Constructor.
|
KNNDistanceOrder(DistanceFunction<O,D> distanceFunction,
int k,
double percentage)
Constructor.
|
KNNJoin(DistanceFunction<? super V,D> distanceFunction,
int k)
Constructor.
|
MaterializeDistances(DistanceFunction<? super O,D> distanceFunction)
Constructor.
|
Constructor and Description |
---|
KNNBenchmarkAlgorithm(DistanceFunction<? super O,D> distanceFunction,
int k,
DatabaseConnection queries,
double sampling,
RandomFactory random)
Constructor.
|
RangeQueryBenchmarkAlgorithm(DistanceFunction<? super O,D> distanceFunction,
DatabaseConnection queries,
double sampling,
RandomFactory random)
Constructor.
|
ValidateApproximativeKNNIndex(DistanceFunction<? super O,D> distanceFunction,
int k,
DatabaseConnection queries,
double sampling,
boolean forcelinear,
RandomFactory random,
Pattern pattern)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<? super V,DoubleDistance> |
AbstractProjectedClustering.distanceFunction
The euclidean distance function.
|
protected DistanceFunction<V,D> |
AbstractProjectedDBSCAN.Parameterizer.innerdist |
Modifier and Type | Method and Description |
---|---|
protected DistanceFunction<? super V,DoubleDistance> |
AbstractProjectedClustering.getDistanceFunction()
Returns the distance function.
|
Modifier and Type | Method and Description |
---|---|
protected void |
AbstractProjectedDBSCAN.Parameterizer.configEpsilon(Parameterization config,
DistanceFunction<V,D> innerdist) |
protected void |
AbstractProjectedDBSCAN.Parameterizer.configOuterDistance(Parameterization config,
D epsilon,
int minpts,
Class<?> preprocessorClass,
DistanceFunction<V,D> innerdist) |
Constructor and Description |
---|
CanopyPreClustering(DistanceFunction<? super O,D> distanceFunction,
D t1,
D t2)
Constructor.
|
DBSCAN(DistanceFunction<? super O,D> distanceFunction,
D epsilon,
int minpts)
Constructor with parameters.
|
DeLiClu(DistanceFunction<? super NV,D> distanceFunction,
int minpts)
Constructor.
|
NaiveMeanShiftClustering(DistanceFunction<? super V,D> distanceFunction,
KernelDensityFunction kernel,
D range)
Constructor.
|
OPTICS(DistanceFunction<? super O,D> distanceFunction,
D epsilon,
int minpts)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) DistanceFunction<? super O,D> |
DistanceBasedInitializationWithMedian.distance
Distance function.
|
(package private) DistanceFunction<? super O,D> |
DistanceBasedInitializationWithMedian.Parameterizer.distance
istance function.
|
Constructor and Description |
---|
DistanceBasedInitializationWithMedian(DistanceFunction<? super O,D> distance,
double quantile)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) DistanceFunction<O,D> |
EpsilonNeighborPredicate.Parameterizer.distfun
Distance function to use
|
protected DistanceFunction<O,D> |
EpsilonNeighborPredicate.distFunc
Distance function to use
|
Constructor and Description |
---|
EpsilonNeighborPredicate(D epsilon,
DistanceFunction<O,D> distFunc)
Full constructor.
|
Constructor and Description |
---|
NaiveAgglomerativeHierarchicalClustering(DistanceFunction<? super O,D> distanceFunction,
LinkageMethod linkage)
Constructor.
|
SLINK(DistanceFunction<? super O,D> distanceFunction)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DistanceFunction<? super V,D> |
KMeansBisecting.getDistanceFunction() |
DistanceFunction<? super V,D> |
BestOfMultipleKMeans.getDistanceFunction() |
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<V,D> |
ReferenceBasedOutlierDetection.distanceFunction
Distance function to use.
|
Modifier and Type | Method and Description |
---|---|
protected void |
AbstractDBOutlier.Parameterizer.configD(Parameterization config,
DistanceFunction<?,D> distanceFunction)
Grab the 'd' configuration option.
|
Constructor and Description |
---|
AbstractDBOutlier(DistanceFunction<? super O,D> distanceFunction,
D d)
Constructor with actual parameters.
|
COP(DistanceFunction<? super V,D> distanceFunction,
int k,
PCARunner<V> pca,
double expect,
COP.DistanceDist dist,
boolean models)
Constructor.
|
DBOutlierDetection(DistanceFunction<O,D> distanceFunction,
D d,
double p)
Constructor with actual parameters.
|
DBOutlierScore(DistanceFunction<O,D> distanceFunction,
D d)
Constructor with parameters.
|
DWOF(DistanceFunction<? super O,D> distanceFunction,
int k,
double delta)
Constructor.
|
KNNOutlier(DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor for a single kNN query.
|
KNNWeightOutlier(DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor with parameters.
|
ODIN(DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor.
|
OPTICSOF(DistanceFunction<? super O,D> distanceFunction,
int minpts)
Constructor with parameters.
|
ReferenceBasedOutlierDetection(int k,
DistanceFunction<V,D> distanceFunction,
ReferencePointsHeuristic<V> refp)
Constructor with parameters.
|
SimpleCOP(DistanceFunction<? super V,D> distanceFunction,
int k,
PCAFilteredRunner<V> pca)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceFunction<? super O,D> |
LoOP.comparisonDistanceFunction
Preprocessor Step 2.
|
protected DistanceFunction<O,D> |
LoOP.Parameterizer.comparisonDistanceFunction
Preprocessor Step 2.
|
protected DistanceFunction<O,D> |
FlexibleLOF.Parameterizer.neighborhoodDistanceFunction
Neighborhood distance function.
|
protected DistanceFunction<? super O,D> |
FlexibleLOF.reachabilityDistanceFunction
Reachability distance function.
|
protected DistanceFunction<O,D> |
FlexibleLOF.Parameterizer.reachabilityDistanceFunction
Reachability distance function.
|
protected DistanceFunction<? super O,D> |
LoOP.reachabilityDistanceFunction
Preprocessor Step 1.
|
protected DistanceFunction<O,D> |
LoOP.Parameterizer.reachabilityDistanceFunction
Preprocessor Step 1.
|
protected DistanceFunction<? super O,D> |
FlexibleLOF.referenceDistanceFunction
Neighborhood distance function.
|
Constructor and Description |
---|
FlexibleLOF(int krefer,
int kreach,
DistanceFunction<? super O,D> neighborhoodDistanceFunction,
DistanceFunction<? super O,D> reachabilityDistanceFunction)
Constructor.
|
FlexibleLOF(int krefer,
int kreach,
DistanceFunction<? super O,D> neighborhoodDistanceFunction,
DistanceFunction<? super O,D> reachabilityDistanceFunction)
Constructor.
|
INFLO(DistanceFunction<? super O,D> distanceFunction,
double m,
int k)
Constructor with parameters.
|
LDF(int k,
DistanceFunction<? super O,D> distance,
KernelDensityFunction kernel,
double h,
double c)
Constructor.
|
LDOF(DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor.
|
LOCI(DistanceFunction<? super O,D> distanceFunction,
D rmax,
int nmin,
double alpha)
Constructor.
|
LOF(int k,
DistanceFunction<? super O,D> distanceFunction)
Constructor.
|
LoOP(int kreach,
int kcomp,
DistanceFunction<? super O,D> reachabilityDistanceFunction,
DistanceFunction<? super O,D> comparisonDistanceFunction,
double lambda)
Constructor with parameters.
|
LoOP(int kreach,
int kcomp,
DistanceFunction<? super O,D> reachabilityDistanceFunction,
DistanceFunction<? super O,D> comparisonDistanceFunction,
double lambda)
Constructor with parameters.
|
OnlineLOF(int krefer,
int kreach,
DistanceFunction<? super O,D> neighborhoodDistanceFunction,
DistanceFunction<? super O,D> reachabilityDistanceFunction)
Constructor.
|
OnlineLOF(int krefer,
int kreach,
DistanceFunction<? super O,D> neighborhoodDistanceFunction,
DistanceFunction<? super O,D> reachabilityDistanceFunction)
Constructor.
|
SimpleKernelDensityLOF(int k,
DistanceFunction<? super O,D> distance,
KernelDensityFunction kernel)
Constructor.
|
SimplifiedLOF(int k,
DistanceFunction<? super O,D> distance)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<O,D> |
AbstractDistanceBasedSpatialOutlier.nonSpatialDistanceFunction
The distance function to use
|
Modifier and Type | Method and Description |
---|---|
protected DistanceFunction<O,D> |
AbstractDistanceBasedSpatialOutlier.getNonSpatialDistanceFunction()
Get the non-spatial relation
|
Constructor and Description |
---|
AbstractDistanceBasedSpatialOutlier(NeighborSetPredicate.Factory<N> npredf,
DistanceFunction<O,D> nonSpatialDistanceFunction)
Constructor.
|
CTLuGLSBackwardSearchAlgorithm(DistanceFunction<V,D> distanceFunction,
int k,
double alpha)
Constructor.
|
CTLuRandomWalkEC(DistanceFunction<N,D> distanceFunction,
double alpha,
double c,
int k)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<? super O,D> |
PrecomputedKNearestNeighborNeighborhood.Factory.distFunc
distance function to use
|
(package private) DistanceFunction<? super O,D> |
PrecomputedKNearestNeighborNeighborhood.Factory.Parameterizer.distFunc
Distance function
|
Constructor and Description |
---|
PrecomputedKNearestNeighborNeighborhood.Factory(int k,
DistanceFunction<? super O,D> distFunc)
Factory Constructor
|
Constructor and Description |
---|
AveragePrecisionAtK(DistanceFunction<? super V,D> distanceFunction,
int k,
double sampling,
Long seed,
boolean includeSelf)
Constructor.
|
DistanceStatisticsWithClasses(DistanceFunction<? super O,D> distanceFunction,
int numbins,
boolean exact,
boolean sampling)
Constructor.
|
EvaluateRankingQuality(DistanceFunction<? super V,D> distanceFunction,
int numbins)
Constructor.
|
RankingQualityHistogram(DistanceFunction<? super O,D> distanceFunction,
int numbins)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<O,D> |
CacheFloatDistanceInOnDiskMatrix.distance
Distance function that is to be cached.
|
private DistanceFunction<O,D> |
CacheFloatDistanceInOnDiskMatrix.Parameterizer.distance
Distance function that is to be cached.
|
private DistanceFunction<O,D> |
CacheDoubleDistanceKNNLists.distance
Distance function that is to be cached.
|
private DistanceFunction<O,D> |
CacheDoubleDistanceKNNLists.Parameterizer.distance
Distance function that is to be cached.
|
private DistanceFunction<O,DoubleDistance> |
CacheDoubleDistanceRangeQueries.distance
Distance function that is to be cached.
|
private DistanceFunction<O,DoubleDistance> |
CacheDoubleDistanceRangeQueries.Parameterizer.distance
Distance function that is to be cached.
|
private DistanceFunction<O,D> |
CacheDoubleDistanceInOnDiskMatrix.distance
Distance function that is to be cached.
|
private DistanceFunction<O,D> |
CacheDoubleDistanceInOnDiskMatrix.Parameterizer.distance
Distance function that is to be cached.
|
Constructor and Description |
---|
CacheDoubleDistanceInOnDiskMatrix(InputStep input,
DistanceFunction<O,D> distance,
File out)
Constructor.
|
CacheDoubleDistanceKNNLists(InputStep input,
DistanceFunction<O,D> distance,
int k,
File out)
Constructor.
|
CacheDoubleDistanceRangeQueries(InputStep input,
DistanceFunction<O,DoubleDistance> distance,
double radius,
File out)
Constructor.
|
CacheFloatDistanceInOnDiskMatrix(InputStep input,
DistanceFunction<O,D> distance,
File out)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) DistanceFunction<? super O,D> |
ComputeKNNOutlierScores.distf
Distance function to use
|
(package private) DistanceFunction<? super O,D> |
ComputeKNNOutlierScores.Parameterizer.distf
Distance function to use
|
Constructor and Description |
---|
ComputeKNNOutlierScores(InputStep inputstep,
DistanceFunction<? super O,D> distf,
int startk,
int stepk,
int maxk,
ByLabelOutlier bylabel,
File outfile,
ScalingFunction scaling)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static <O,D extends Distance<D>> |
QueryUtil.getDistanceQuery(Database database,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a distance query for a given distance function, automatically choosing
a relation.
|
<O,D extends Distance<D>> |
Database.getDistanceQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get the distance query for a particular distance function.
|
<O,D extends Distance<D>> |
AbstractDatabase.getDistanceQuery(Relation<O> objQuery,
DistanceFunction<? super O,D> distanceFunction,
Object... hints) |
static <O,D extends Distance<D>> |
QueryUtil.getKNNQuery(Database database,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a KNN query object for the given distance function.
|
static <O,D extends Distance<D>> |
QueryUtil.getKNNQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a KNN query object for the given distance function.
|
static <O,D extends Distance<D>> |
QueryUtil.getRangeQuery(Database database,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a range query object for the given distance function.
|
static <O,D extends Distance<D>> |
QueryUtil.getRangeQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a range query object for the given distance function.
|
static <O,D extends Distance<D>> |
QueryUtil.getRKNNQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a rKNN query object for the given distance function.
|
Modifier and Type | Method and Description |
---|---|
DistanceFunction<? super O,D> |
DistanceQuery.getDistanceFunction()
Get the inner distance function.
|
Modifier and Type | Method and Description |
---|---|
static boolean |
DistanceUtil.isDoubleDistanceFunction(DistanceFunction<?,?> df)
Test whether a distance function is double-valued.
|
Modifier and Type | Class and Description |
---|---|
static class |
AbstractIndexBasedDistanceFunction.Instance<O,I extends Index,D extends Distance<D>,F extends DistanceFunction<? super O,D>>
The actual instance bound to a particular database.
|
Modifier and Type | Interface and Description |
---|---|
interface |
DBIDDistanceFunction<D extends Distance<?>>
Distance functions valid in a database context only (i.e. for DBIDs)
For any "distance" that cannot be computed for arbitrary objects, only those
that exist in the database and referenced by their ID.
|
interface |
DoubleNorm<O>
Interface for norms in the double domain.
|
interface |
FilteredLocalPCABasedDistanceFunction<O extends NumberVector<?>,P extends FilteredLocalPCAIndex<? super O>,D extends Distance<D>>
Interface for local PCA based preprocessors.
|
interface |
IndexBasedDistanceFunction<O,D extends Distance<D>>
Distance function relying on an index (such as preprocessed neighborhoods).
|
interface |
Norm<O,D extends Distance<D>>
Abstract interface for a mathematical norm.
|
interface |
NumberVectorDistanceFunction<D extends Distance<D>>
Base interface for the common case of distance functions defined on numerical vectors.
|
interface |
PrimitiveDistanceFunction<O,D extends Distance<?>>
Primitive distance function that is defined on some kind of object.
|
interface |
PrimitiveDoubleDistanceFunction<O>
Interface for distance functions that can provide a raw double value.
|
interface |
SpatialPrimitiveDistanceFunction<V extends SpatialComparable,D extends Distance<D>>
API for a spatial primitive distance function.
|
interface |
SpatialPrimitiveDoubleDistanceFunction<V extends SpatialComparable>
Interface combining spatial primitive distance functions with primitive
number distance functions.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDatabaseDistanceFunction<O,D extends Distance<D>>
Abstract super class for distance functions needing a database context.
|
class |
AbstractDBIDDistanceFunction<D extends Distance<D>>
AbstractDistanceFunction provides some methods valid for any extending class.
|
class |
AbstractIndexBasedDistanceFunction<O,I extends Index,D extends Distance<D>>
Abstract super class for distance functions needing a database index.
|
class |
AbstractPrimitiveDistanceFunction<O,D extends Distance<D>>
AbstractDistanceFunction provides some methods valid for any extending class.
|
class |
AbstractSpatialDoubleDistanceFunction
Abstract base class for typical distance functions that allow
rectangle-to-rectangle lower bounds.
|
class |
AbstractSpatialDoubleDistanceNorm
Abstract base class for typical distance functions that allow
rectangle-to-rectangle lower bounds.
|
class |
AbstractVectorDoubleDistanceFunction
Abstract base class for the most common family of distance functions: defined
on number vectors and returning double values.
|
class |
AbstractVectorDoubleDistanceNorm
Abstract base class for double-valued number-vector-based distances based on
norms.
|
class |
ArcCosineDistanceFunction
Cosine distance function for feature vectors.
|
class |
BrayCurtisDistanceFunction
Bray-Curtis distance function / Sørensen–Dice coefficient for continuous
spaces.
|
class |
CanberraDistanceFunction
Canberra distance function, a variation of Manhattan distance.
|
class |
ClarkDistanceFunction
Clark distance function for vector spaces.
|
class |
CosineDistanceFunction
Cosine distance function for feature vectors.
|
class |
Kulczynski1DistanceFunction
Kulczynski similarity 1, in distance form.
|
class |
LocallyWeightedDistanceFunction<V extends NumberVector<?>>
Provides a locally weighted distance function.
|
class |
LorentzianDistanceFunction
Lorentzian distance function for vector spaces.
|
class |
MinKDistance<O,D extends Distance<D>>
A distance that is at least the distance to the kth nearest neighbor.
|
class |
ProxyDistanceFunction<O,D extends Distance<D>>
Distance function to proxy computations to another distance (that probably
was run before).
|
class |
RandomStableDistanceFunction
This is a dummy distance providing random values (obviously not metrical),
useful mostly for unit tests and baseline evaluations: obviously this
distance provides no benefit whatsoever.
|
class |
SharedNearestNeighborJaccardDistanceFunction<O>
SharedNearestNeighborJaccardDistanceFunction computes the Jaccard
coefficient, which is a proper distance metric.
|
class |
WeightedCanberraDistanceFunction
Weighted Canberra distance function, a variation of Manhattan distance.
|
class |
WeightedDistanceFunction
Provides the Weighted distance for feature vectors.
|
Modifier and Type | Field and Description |
---|---|
(package private) DistanceFunction<? super O,D> |
AbstractDatabaseDistanceFunction.Instance.parent
Parent distance
|
protected F |
AbstractIndexBasedDistanceFunction.Instance.parent
Our parent distance function
|
protected DistanceFunction<? super O,D> |
MinKDistance.parentDistance
The distance function to determine the exact distance.
|
protected DistanceFunction<? super O,D> |
MinKDistance.Parameterizer.parentDistance
The distance function to determine the exact distance.
|
Modifier and Type | Method and Description |
---|---|
DistanceFunction<? super T,D> |
MinKDistance.Instance.getDistanceFunction() |
DistanceFunction<? super O,D> |
AbstractDatabaseDistanceFunction.Instance.getDistanceFunction() |
static <V,T extends V,D extends Distance<D>> |
ProxyDistanceFunction.unwrapDistance(DistanceFunction<V,D> dfun)
Helper function, to resolve any wrapped Proxy Distances
|
Modifier and Type | Method and Description |
---|---|
static <V,T extends V,D extends Distance<D>> |
ProxyDistanceFunction.unwrapDistance(DistanceFunction<V,D> dfun)
Helper function, to resolve any wrapped Proxy Distances
|
Constructor and Description |
---|
AbstractDatabaseDistanceFunction.Instance(Relation<O> database,
DistanceFunction<? super O,D> parent)
Constructor.
|
MinKDistance.Instance(Relation<T> relation,
int k,
DistanceFunction<? super O,D> parentDistance)
Constructor.
|
MinKDistance(DistanceFunction<? super O,D> parentDistance,
int k)
Full constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractSimilarityAdapter<O>
Adapter from a normalized similarity function to a distance function.
|
class |
ArccosSimilarityAdapter<O>
Adapter from a normalized similarity function to a distance function using
arccos(sim) . |
class |
LinearAdapterLinear<O>
Adapter from a normalized similarity function to a distance function using
1 - sim . |
class |
LnSimilarityAdapter<O>
Adapter from a normalized similarity function to a distance function using
-log(sim) . |
Constructor and Description |
---|
AbstractSimilarityAdapter.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
ArccosSimilarityAdapter.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
LinearAdapterLinear.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
LnSimilarityAdapter.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
HistogramIntersectionDistanceFunction
Intersection distance for color histograms.
|
class |
HSBHistogramQuadraticDistanceFunction
Distance function for HSB color histograms based on a quadratic form and
color similarity.
|
class |
RGBHistogramQuadraticDistanceFunction
Distance function for RGB color histograms based on a quadratic form and
color similarity.
|
Modifier and Type | Class and Description |
---|---|
class |
ERiCDistanceFunction
Provides a distance function for building the hierarchy in the ERiC
algorithm.
|
class |
PCABasedCorrelationDistanceFunction
Provides the correlation distance for real valued vectors.
|
class |
PearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors.
|
class |
SquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors.
|
class |
WeightedPearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors.
|
class |
WeightedSquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
DiskCacheBasedDoubleDistanceFunction
Provides a DistanceFunction that is based on double distances given by a
distance matrix of an external file.
|
class |
DiskCacheBasedFloatDistanceFunction
Provides a DistanceFunction that is based on float distances given by a
distance matrix of an external file.
|
class |
FileBasedDoubleDistanceFunction
Provides a DistanceFunction that is based on double distances given by a
distance matrix of an external file.
|
class |
FileBasedFloatDistanceFunction
Provides a DistanceFunction that is based on float distances given by a
distance matrix of an external file.
|
Modifier and Type | Class and Description |
---|---|
class |
DimensionSelectingLatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form.
|
class |
LatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form.
|
class |
LngLatDistanceFunction
Distance function for 2D vectors in Longitude, Latitude form.
|
Modifier and Type | Class and Description |
---|---|
class |
HistogramMatchDistanceFunction
Distance function based on histogram matching, i.e.
|
class |
KolmogorovSmirnovDistanceFunction
Distance function based on the Kolmogorov-Smirnov goodness of fit test.
|
Modifier and Type | Class and Description |
---|---|
class |
EuclideanDistanceFunction
Provides the Euclidean distance for FeatureVectors.
|
class |
LPIntegerNormDistanceFunction
Provides a LP-Norm for number vectors.
|
class |
LPNormDistanceFunction
Provides a LP-Norm for FeatureVectors.
|
class |
ManhattanDistanceFunction
Manhattan distance function to compute the Manhattan distance for a pair of
FeatureVectors.
|
class |
MaximumDistanceFunction
Maximum distance function to compute the Maximum distance for a pair of
FeatureVectors.
|
class |
MinimumDistanceFunction
Maximum distance function to compute the Minimum distance for a pair of
FeatureVectors.
|
class |
SparseEuclideanDistanceFunction
Euclidean distance function.
|
class |
SparseLPNormDistanceFunction
Provides a LP-Norm for FeatureVectors.
|
class |
SparseManhattanDistanceFunction
Manhattan distance function.
|
class |
SparseMaximumDistanceFunction
Maximum distance function.
|
class |
SquaredEuclideanDistanceFunction
Provides the squared Euclidean distance for FeatureVectors.
|
class |
WeightedEuclideanDistanceFunction
Provides the Euclidean distance for FeatureVectors.
|
class |
WeightedLPNormDistanceFunction
Weighted version of the Minkowski L_p metrics distance function.
|
class |
WeightedManhattanDistanceFunction
Weighted version of the Minkowski L_p metrics distance function.
|
class |
WeightedMaximumDistanceFunction
Weighted version of the Minkowski L_p metrics distance function.
|
class |
WeightedSquaredEuclideanDistanceFunction
Provides the squared Euclidean distance for FeatureVectors.
|
Modifier and Type | Class and Description |
---|---|
class |
ChiSquaredDistanceFunction
Chi-Squared distance function, symmetric version.
|
class |
JeffreyDivergenceDistanceFunction
Provides the Jeffrey Divergence Distance for FeatureVectors.
|
class |
JensenShannonDivergenceDistanceFunction
Jensen-Shannon Divergence is essentially the same as Jeffrey divergence, only
scaled by half.
|
class |
KullbackLeiblerDivergenceAsymmetricDistanceFunction
Kullback-Leibler (asymmetric!)
|
class |
KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction
Kullback-Leibler (asymmetric!)
|
class |
SqrtJensenShannonDivergenceDistanceFunction
The square root of Jensen-Shannon divergence is metric.
|
Modifier and Type | Class and Description |
---|---|
class |
LevenshteinDistanceFunction
Classic Levenshtein distance on strings.
|
class |
NormalizedLevenshteinDistanceFunction
Levenshtein distance on strings, normalized by string length.
|
Modifier and Type | Interface and Description |
---|---|
interface |
DimensionSelectingSubspaceDistanceFunction<O,D extends Distance<D>>
Interface for dimension selecting subspace distance functions.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDimensionsSelectingDoubleDistanceFunction<V extends FeatureVector<?>>
Provides a distance function that computes the distance (which is a double
distance) between feature vectors only in specified dimensions.
|
class |
AbstractPreferenceVectorBasedCorrelationDistanceFunction<V extends NumberVector<?>,P extends PreferenceVectorIndex<V>>
Abstract super class for all preference vector based correlation distance
functions.
|
class |
DimensionSelectingDistanceFunction
Provides a distance function that computes the distance between feature
vectors as the absolute difference of their values in a specified dimension.
|
class |
DiSHDistanceFunction
Distance function used in the DiSH algorithm.
|
class |
HiSCDistanceFunction<V extends NumberVector<?>>
Distance function used in the HiSC algorithm.
|
class |
LocalSubspaceDistanceFunction
Provides a distance function to determine a kind of correlation distance
between two points, which is a pair consisting of the distance between the
two subspaces spanned by the strong eigenvectors of the two points and the
affine distance between the two subspaces.
|
class |
SubspaceEuclideanDistanceFunction
Provides a distance function that computes the Euclidean distance between
feature vectors only in specified dimensions.
|
class |
SubspaceLPNormDistanceFunction
Provides a distance function that computes the Euclidean distance between
feature vectors only in specified dimensions.
|
class |
SubspaceManhattanDistanceFunction
Provides a distance function that computes the Euclidean distance between
feature vectors only in specified dimensions.
|
class |
SubspaceMaximumDistanceFunction
Provides a distance function that computes the Euclidean distance between
feature vectors only in specified dimensions.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractEditDistanceFunction
Provides the Edit Distance for FeatureVectors.
|
class |
DTWDistanceFunction
Provides the Dynamic Time Warping distance for FeatureVectors.
|
class |
EDRDistanceFunction
Provides the Edit Distance on Real Sequence distance for FeatureVectors.
|
class |
ERPDistanceFunction
Provides the Edit Distance With Real Penalty distance for FeatureVectors.
|
class |
LCSSDistanceFunction
Provides the Longest Common Subsequence distance for FeatureVectors.
|
Modifier and Type | Class and Description |
---|---|
class |
JaccardPrimitiveSimilarityFunction<O extends FeatureVector<?>>
A flexible extension of Jaccard similarity to non-binary vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
LinearKernelFunction
Provides a linear Kernel function that computes a similarity between the two
feature vectors V1 and V2 defined by V1^T*V2.
|
class |
PolynomialKernelFunction
Provides a polynomial Kernel function that computes a similarity between the
two feature vectors V1 and V2 defined by (V1^T*V2)^degree.
|
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<? super O,? extends NumberDistance<?,?>> |
ComputeSimilarityMatrixImage.distanceFunction
The distance function to use
|
private DistanceFunction<O,? extends NumberDistance<?,?>> |
ComputeSimilarityMatrixImage.Parameterizer.distanceFunction
The distance function to use
|
Constructor and Description |
---|
ComputeSimilarityMatrixImage(DistanceFunction<? super O,? extends NumberDistance<?,?>> distanceFunction,
ScalingFunction scaling,
boolean skipzero)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
boolean |
LocalitySensitiveHashFunctionFamily.isCompatible(DistanceFunction<?,?> df)
Check whether the given distance function can be accelerated using this
hash family.
|
boolean |
ManhattanHashFunctionFamily.isCompatible(DistanceFunction<?,?> df) |
boolean |
EuclideanHashFunctionFamily.isCompatible(DistanceFunction<?,?> df) |
Modifier and Type | Field and Description |
---|---|
protected DistanceFunction<? super O,D> |
AbstractMaterializeKNNPreprocessor.distanceFunction
The distance function to be used.
|
protected DistanceFunction<? super O,D> |
AbstractMaterializeKNNPreprocessor.Factory.distanceFunction
Hold the distance function to be used.
|
protected DistanceFunction<? super O,D> |
AbstractMaterializeKNNPreprocessor.Factory.Parameterizer.distanceFunction
Hold the distance function to be used.
|
Modifier and Type | Method and Description |
---|---|
DistanceFunction<? super O,D> |
AbstractMaterializeKNNPreprocessor.Factory.getDistanceFunction()
Get the distance function.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceFunction<NV,DoubleDistance> |
AbstractFilteredPCAIndex.Factory.pcaDistanceFunction
Holds the instance of the distance function specified by
AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID . |
protected DistanceFunction<NV,DoubleDistance> |
AbstractFilteredPCAIndex.Factory.Parameterizer.pcaDistanceFunction
Holds the instance of the distance function specified by
AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID . |
Constructor and Description |
---|
AbstractFilteredPCAIndex.Factory(DistanceFunction<NV,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<NV> pca)
Constructor.
|
KNNQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<V> pca,
Integer k)
Constructor.
|
RangeQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<V> pca,
DoubleDistance epsilon)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceFunction<O,D> |
SharedNearestNeighborPreprocessor.distanceFunction
Hold the distance function to be used.
|
protected DistanceFunction<O,D> |
SharedNearestNeighborPreprocessor.Factory.distanceFunction
Hold the distance function to be used.
|
protected DistanceFunction<O,D> |
SharedNearestNeighborPreprocessor.Factory.Parameterizer.distanceFunction
Hold the distance function to be used.
|
Constructor and Description |
---|
SharedNearestNeighborPreprocessor.Factory(int numberOfNeighbors,
DistanceFunction<O,D> distanceFunction)
Constructor.
|
SharedNearestNeighborPreprocessor(Relation<O> relation,
int numberOfNeighbors,
DistanceFunction<O,D> distanceFunction)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceFunction<NV,D> |
AbstractSubspaceProjectionIndex.rangeQueryDistanceFunction
The distance function for the variance analysis.
|
protected DistanceFunction<NV,D> |
AbstractSubspaceProjectionIndex.Factory.rangeQueryDistanceFunction
The distance function for the variance analysis.
|
protected DistanceFunction<NV,D> |
AbstractSubspaceProjectionIndex.Factory.Parameterizer.rangeQueryDistanceFunction
The distance function for the variance analysis.
|
Modifier and Type | Method and Description |
---|---|
protected void |
AbstractSubspaceProjectionIndex.Factory.Parameterizer.configEpsilon(Parameterization config,
DistanceFunction<NV,D> rangeQueryDistanceFunction) |
Constructor and Description |
---|
AbstractSubspaceProjectionIndex.Factory(D epsilon,
DistanceFunction<NV,D> rangeQueryDistanceFunction,
int minpts)
Constructor.
|
AbstractSubspaceProjectionIndex(Relation<NV> relation,
D epsilon,
DistanceFunction<NV,D> rangeQueryDistanceFunction,
int minpts)
Constructor.
|
FourCSubspaceIndex.Factory(D epsilon,
DistanceFunction<V,D> rangeQueryDistanceFunction,
int minpts,
PCAFilteredRunner<V> pca)
Constructor.
|
FourCSubspaceIndex(Relation<V> relation,
D epsilon,
DistanceFunction<V,D> rangeQueryDistanceFunction,
int minpts,
PCAFilteredRunner<V> pca)
Full constructor.
|
PreDeConSubspaceIndex.Factory(D epsilon,
DistanceFunction<V,D> rangeQueryDistanceFunction,
int minpts,
double delta)
Constructor.
|
PreDeConSubspaceIndex(Relation<V> relation,
D epsilon,
DistanceFunction<V,D> rangeQueryDistanceFunction,
int minpts,
double delta)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
abstract DistanceFunction<? super O,D> |
MetricalIndexTree.getDistanceFunction()
Returns the distance function of this metrical index.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceFunction<? super O,D> |
MTreeSettings.distanceFunction
Holds the instance of the trees distance function.
|
Modifier and Type | Method and Description |
---|---|
DistanceFunction<? super O,D> |
AbstractMTree.getDistanceFunction() |
Constructor and Description |
---|
DistanceParameter(OptionID optionID,
DistanceFunction<?,D> dist)
Constructs a double parameter with the given optionID.
|
DistanceParameter(OptionID optionID,
DistanceFunction<?,D> dist,
boolean optional)
Constructs a double parameter with the given optionID and optional flag.
|
DistanceParameter(OptionID optionID,
DistanceFunction<?,D> dist,
D defaultValue)
Constructs a double parameter with the given optionID and default value.
|
Constructor and Description |
---|
NaiveAgglomerativeHierarchicalClustering1(DistanceFunction<? super O,D> distanceFunction,
int numclusters)
Constructor.
|
NaiveAgglomerativeHierarchicalClustering2(DistanceFunction<? super O,D> distanceFunction,
int numclusters)
Constructor.
|
NaiveAgglomerativeHierarchicalClustering3(DistanceFunction<? super O,D> distanceFunction,
int numclusters,
NaiveAgglomerativeHierarchicalClustering3.Linkage linkage)
Constructor.
|
NaiveAgglomerativeHierarchicalClustering4(DistanceFunction<? super O,D> distanceFunction,
NaiveAgglomerativeHierarchicalClustering4.Linkage linkage)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
MultiLPNorm
Tutorial example for ELKI.
|
class |
TutorialDistanceFunction
Tutorial example for ELKI.
|
Constructor and Description |
---|
DistanceStddevOutlier(DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor.
|
ODIN(DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor.
|