Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash |
Helper classes for the
CASH algorithm. |
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.clique |
Helper classes for the
CLIQUE algorithm. |
de.lmu.ifi.dbs.elki.database.ids |
Database object identification and ID group handling API.
|
de.lmu.ifi.dbs.elki.database.ids.integer |
Integer-based DBID implementation --
do not use directly - always use
DBIDUtil . |
de.lmu.ifi.dbs.elki.index.preprocessed.preference |
Indexes storing preference vectors.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop | |
de.lmu.ifi.dbs.elki.result.optics |
Result classes for OPTICS.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.pairsegments |
Visualizers for inspecting cluster differences using pair counting segments.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
Modifier and Type | Field and Description |
---|---|
protected ModifiableDBIDs |
SNNClustering.noise
Holds a set of noise.
|
protected ModifiableDBIDs |
DBSCAN.noise
Holds a set of noise.
|
private ModifiableDBIDs |
AbstractProjectedDBSCAN.noise
Holds a set of noise.
|
private ModifiableDBIDs |
OPTICS.processedIDs
Holds a set of processed ids.
|
protected ModifiableDBIDs |
SNNClustering.processedIDs
Holds a set of processed ids.
|
protected ModifiableDBIDs |
DBSCAN.processedIDs
Holds a set of processed ids.
|
private ModifiableDBIDs |
AbstractProjectedDBSCAN.processedIDs
Holds a set of processed ids.
|
Modifier and Type | Field and Description |
---|---|
protected List<ModifiableDBIDs> |
SNNClustering.resultList
Holds a list of clusters found.
|
protected List<ModifiableDBIDs> |
DBSCAN.resultList
Holds a list of clusters found.
|
private List<ModifiableDBIDs> |
AbstractProjectedDBSCAN.resultList
Holds a list of clusters found.
|
Modifier and Type | Field and Description |
---|---|
(package private) ModifiableDBIDs |
ORCLUS.ORCLUSCluster.objectIDs
The ids of the objects belonging to this cluster.
|
private ModifiableDBIDs |
CASH.processedIDs
Holds a set of processed ids.
|
Modifier and Type | Method and Description |
---|---|
private Matrix |
CASH.runDerivator(Relation<ParameterizationFunction> relation,
int dim,
CASHInterval interval,
ModifiableDBIDs ids)
Runs the derivator on the specified interval and assigns all points having
a distance less then the standard deviation of the derivator model to the
model to this model.
|
Modifier and Type | Field and Description |
---|---|
private ModifiableDBIDs |
CASHInterval.ids
Holds the ids of the objects associated with this interval.
|
Modifier and Type | Method and Description |
---|---|
ModifiableDBIDs |
CASHIntervalSplit.determineIDs(DBIDs superSetIDs,
HyperBoundingBox interval,
double d_min,
double d_max)
Determines the ids belonging to the given interval, i.e. the
parameterization functions falling within the interval.
|
ModifiableDBIDs |
CASHInterval.getIDs()
Returns the set of ids of the objects associated with this interval.
|
Constructor and Description |
---|
CASHInterval(double[] min,
double[] max,
CASHIntervalSplit split,
ModifiableDBIDs ids,
int maxSplitDimension,
int level,
double d_min,
double d_max)
Provides a unique interval represented by its id, a hyper bounding box and
a set of objects ids associated with this interval.
|
Modifier and Type | Method and Description |
---|---|
void |
EpsilonNeighborPredicate.Instance.addDBIDs(ModifiableDBIDs ids,
DistanceDBIDResult<D> neighbors) |
void |
NeighborPredicate.Instance.addDBIDs(ModifiableDBIDs ids,
T neighbors)
Add the neighbors to a DBID set
|
Modifier and Type | Method and Description |
---|---|
protected boolean |
KMedoidsPAM.assignToNearestCluster(ArrayDBIDs means,
DBIDs ids,
WritableDoubleDataStore second,
List<? extends ModifiableDBIDs> clusters,
DistanceQuery<V,D> distQ)
Returns a list of clusters.
|
protected boolean |
KMedoidsEM.assignToNearestCluster(ArrayDBIDs means,
Mean[] mdist,
List<? extends ModifiableDBIDs> clusters,
DistanceQuery<V,D> distQ)
Returns a list of clusters.
|
protected boolean |
AbstractKMeans.assignToNearestCluster(Relation<V> relation,
List<? extends NumberVector<?>> means,
List<? extends ModifiableDBIDs> clusters)
Returns a list of clusters.
|
protected boolean |
AbstractKMeans.macQueenIterate(Relation<V> relation,
List<Vector> means,
List<ModifiableDBIDs> clusters)
Perform a MacQueen style iteration.
|
protected List<Vector> |
AbstractKMeans.means(List<? extends ModifiableDBIDs> clusters,
List<? extends NumberVector<?>> means,
Relation<V> database)
Returns the mean vectors of the given clusters in the given database.
|
protected List<NumberVector<?>> |
AbstractKMeans.medians(List<? extends ModifiableDBIDs> clusters,
List<? extends NumberVector<?>> medians,
Relation<V> database)
Returns the median vectors of the given clusters in the given database.
|
Modifier and Type | Field and Description |
---|---|
(package private) ModifiableDBIDs |
PROCLUS.PROCLUSCluster.objectIDs
The ids of the objects belonging to this cluster.
|
Modifier and Type | Method and Description |
---|---|
private ModifiableDBIDs |
PROCLUS.computeBadMedoids(Map<DBID,PROCLUS.PROCLUSCluster> clusters,
int threshold)
Computes the bad medoids, where the medoid of a cluster with less than the
specified threshold of objects is bad.
|
private ModifiableDBIDs |
PROCLUS.computeM_current(DBIDs m,
DBIDs m_best,
DBIDs m_bad,
Random random)
Computes the set of medoids in current iteration.
|
private ModifiableDBIDs |
PROCLUS.greedy(DistanceQuery<V,DoubleDistance> distFunc,
DBIDs sampleSet,
int m,
Random random)
Returns a piercing set of k medoids from the specified sample set.
|
private ModifiableDBIDs |
PROCLUS.initialSet(DBIDs sampleSet,
int k,
Random random)
Returns a set of k elements from the specified sample set.
|
Modifier and Type | Method and Description |
---|---|
private List<Pair<Subspace,ModifiableDBIDs>> |
CLIQUE.determineClusters(List<CLIQUESubspace<V>> denseSubspaces)
Determines the clusters in the specified dense subspaces.
|
Constructor and Description |
---|
PROCLUS.PROCLUSCluster(ModifiableDBIDs objectIDs,
gnu.trove.set.TIntSet dimensions,
V centroid)
Provides a new cluster with the specified parameters.
|
Modifier and Type | Field and Description |
---|---|
private ModifiableDBIDs |
CLIQUEUnit.ids
The ids of the feature vectors this unit contains.
|
Modifier and Type | Method and Description |
---|---|
List<Pair<Subspace,ModifiableDBIDs>> |
CLIQUESubspace.determineClusters()
Determines all clusters in this subspace by performing a depth-first search
algorithm to find connected dense units.
|
Modifier and Type | Method and Description |
---|---|
void |
CLIQUESubspace.dfs(CLIQUEUnit<V> unit,
ModifiableDBIDs cluster,
CLIQUESubspace<V> model)
Depth-first search algorithm to find connected dense units in this subspace
that build a cluster.
|
Constructor and Description |
---|
CLIQUEUnit(SortedSet<Interval> intervals,
ModifiableDBIDs ids)
Creates a new k-dimensional unit for the given intervals.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ArrayModifiableDBIDs
Array-oriented implementation of a modifiable DBID collection.
|
interface |
HashSetModifiableDBIDs
Set-oriented implementation of a modifiable DBID collection.
|
Modifier and Type | Method and Description |
---|---|
static ModifiableDBIDs |
DBIDUtil.difference(DBIDs ids1,
DBIDs ids2)
Returns the difference of the two specified collection of IDs.
|
static ModifiableDBIDs |
DBIDUtil.ensureModifiable(DBIDs ids)
Ensure modifiable.
|
static ModifiableDBIDs |
DBIDUtil.intersection(DBIDs first,
DBIDs second)
Compute the set intersection of two sets.
|
static ModifiableDBIDs |
DBIDUtil.randomSample(DBIDs source,
int k,
int seed)
Produce a random sample of the given DBIDs.
|
static ModifiableDBIDs |
DBIDUtil.randomSample(DBIDs source,
int k,
Long seed)
Produce a random sample of the given DBIDs.
|
static ModifiableDBIDs |
DBIDUtil.randomSample(DBIDs source,
int k,
Random random)
Produce a random sample of the given DBIDs.
|
static ModifiableDBIDs |
DBIDUtil.randomSample(DBIDs source,
int k,
RandomFactory rnd)
Produce a random sample of the given DBIDs.
|
static ModifiableDBIDs |
DBIDUtil.union(DBIDs ids1,
DBIDs ids2)
Returns the union of the two specified collection of IDs.
|
Modifier and Type | Class and Description |
---|---|
(package private) class |
TroveArrayModifiableDBIDs
Class using a GNU Trove int array list as storage.
|
(package private) class |
TroveHashSetModifiableDBIDs
Implementation using GNU Trove Int Hash Sets.
|
Modifier and Type | Method and Description |
---|---|
private BitSet |
DiSHPreferenceVectorIndex.determinePreferenceVector(Relation<V> relation,
ModifiableDBIDs[] neighborIDs,
StringBuilder msg)
Determines the preference vector according to the specified neighbor ids.
|
private BitSet |
DiSHPreferenceVectorIndex.determinePreferenceVectorByApriori(Relation<V> relation,
ModifiableDBIDs[] neighborIDs,
StringBuilder msg)
Determines the preference vector with the apriori strategy.
|
private BitSet |
DiSHPreferenceVectorIndex.determinePreferenceVectorByMaxIntersection(ModifiableDBIDs[] neighborIDs,
StringBuilder msg)
Determines the preference vector with the max intersection strategy.
|
private int |
DiSHPreferenceVectorIndex.maxIntersection(Map<Integer,ModifiableDBIDs> candidates,
DBIDs set,
ModifiableDBIDs result)
Returns the index of the set having the maximum intersection set with the
specified set contained in the specified map.
|
Modifier and Type | Method and Description |
---|---|
private int |
DiSHPreferenceVectorIndex.max(Map<Integer,ModifiableDBIDs> candidates)
Returns the set with the maximum size contained in the specified map.
|
private int |
DiSHPreferenceVectorIndex.maxIntersection(Map<Integer,ModifiableDBIDs> candidates,
DBIDs set,
ModifiableDBIDs result)
Returns the index of the set having the maximum intersection set with the
specified set contained in the specified map.
|
Modifier and Type | Method and Description |
---|---|
private void |
MkAppTree.leafEntryIDs(MkAppTreeNode<O,D> node,
ModifiableDBIDs result)
Determines the ids of the leaf entries stored in the specified subtree.
|
Modifier and Type | Method and Description |
---|---|
private void |
MkCoPTree.doReverseKNNQuery(int k,
DBIDRef q,
GenericDistanceDBIDList<D> result,
ModifiableDBIDs candidates)
Performs a reverse knn query.
|
Modifier and Type | Field and Description |
---|---|
(package private) ModifiableDBIDs |
ClusterOrderResult.dbids
The DBIDs we are defined for
|
Modifier and Type | Field and Description |
---|---|
protected ModifiableDBIDs |
SegmentsStylingPolicy.unselectedObjects
Not selected IDs that will be drawn in default colors.
|
Modifier and Type | Method and Description |
---|---|
protected void |
SameSizeKMeansAlgorithm.transfer(WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
SameSizeKMeansAlgorithm.Meta meta,
ModifiableDBIDs src,
ModifiableDBIDs dst,
DBIDRef id,
Integer dstnum)
Transfer a single element from one cluster to another.
|
Modifier and Type | Method and Description |
---|---|
protected ArrayModifiableDBIDs |
SameSizeKMeansAlgorithm.initialAssignment(List<ModifiableDBIDs> clusters,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
DBIDs ids) |
protected List<? extends NumberVector<?>> |
SameSizeKMeansAlgorithm.refineResult(Relation<V> relation,
List<? extends NumberVector<?>> means,
List<ModifiableDBIDs> clusters,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
ArrayModifiableDBIDs tids)
Perform k-means style iterations to improve the clustering result.
|