Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.cluster |
Visualizers for clustering results based on parallel coordinates.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster |
Visualizers for clustering results based on 2D projections.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
Modifier and Type | Method and Description |
---|---|
Clustering<MeanModel<V>> |
NaiveMeanShiftClustering.run(Database database,
Relation<V> relation)
Run the mean-shift clustering algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKMeans<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>>
Abstract base class for k-means implementations.
|
Modifier and Type | Method and Description |
---|---|
Clustering<MeanModel<V>> |
KMediansLloyd.run(Database database,
Relation<V> relation)
Run k-medians.
|
Modifier and Type | Class and Description |
---|---|
class |
EMModel<V extends FeatureVector<?>>
Cluster model of an EM cluster, providing a mean and a full covariance
Matrix.
|
class |
KMeansModel<V extends NumberVector<?>>
Trivial subclass of the
MeanModel that indicates the clustering to be
produced by k-means (so the Voronoi cell visualization is sensible). |
class |
SubspaceModel<V extends FeatureVector<?>>
Model for Subspace Clusters.
|
Modifier and Type | Field and Description |
---|---|
private Clustering<MeanModel<? extends NumberVector<?>>> |
ClusterParallelMeanVisualization.Instance.clustering
The result we visualize.
|
Modifier and Type | Method and Description |
---|---|
private static Clustering<MeanModel<? extends NumberVector<?>>> |
ClusterParallelMeanVisualization.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model.
|
Modifier and Type | Method and Description |
---|---|
private static <NV extends NumberVector<?>> |
EMClusterVisualization.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model.
|
Modifier and Type | Method and Description |
---|---|
Clustering<MeanModel<V>> |
SameSizeKMeansAlgorithm.run(Database database,
Relation<V> relation)
Run k-means with cluster size constraints.
|