|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use FiniteProgress | |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms
Clustering algorithms are supposed to implement the Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms |
de.lmu.ifi.dbs.elki.index.preprocessed.knn | Indexes providing KNN and rKNN data. |
de.lmu.ifi.dbs.elki.logging.progress | Progress status objects (for UI) |
Uses of FiniteProgress in de.lmu.ifi.dbs.elki.algorithm.clustering |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering with parameters of type FiniteProgress | |
---|---|
protected void |
DBSCAN.expandCluster(Database database,
RangeQuery<O,D> rangeQuery,
DBID startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
DBSCAN-function expandCluster. |
protected void |
AbstractProjectedDBSCAN.expandCluster(LocallyWeightedDistanceFunction.Instance<V> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery,
DBID startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
ExpandCluster function of DBSCAN. |
protected void |
SNNClustering.expandCluster(SimilarityQuery<O,IntegerDistance> snnInstance,
DBID startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
DBSCAN-function expandCluster adapted to SNN criterion. |
protected void |
OPTICS.expandClusterOrder(ClusterOrderResult<D> clusterOrder,
Database database,
RangeQuery<O,D> rangeQuery,
DBID objectID,
D epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder. |
protected void |
OPTICS.expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder,
Database database,
RangeQuery<O,DoubleDistance> rangeQuery,
DBID objectID,
DoubleDistance epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder. |
private Cluster<DendrogramModel<D>> |
SLINK.root(Map<DBID,ModifiableDBIDs> cluster_ids,
Map<DBID,D> cluster_distances,
DataStore<DBID> pi,
DataStore<D> lambda,
ModifiableHierarchy<Cluster<DendrogramModel<D>>> hier,
FiniteProgress progress)
|
Uses of FiniteProgress in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with parameters of type FiniteProgress | |
---|---|
private Clustering<Model> |
CASH.doRun(Relation<ParameterizationFunction> relation,
FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is recursively called until only noise is left. |
Uses of FiniteProgress in de.lmu.ifi.dbs.elki.index.preprocessed.knn |
---|
Methods in de.lmu.ifi.dbs.elki.index.preprocessed.knn with parameters of type FiniteProgress | |
---|---|
private void |
MaterializeKNNAndRKNNPreprocessor.materializeKNNAndRKNNs(ArrayDBIDs ids,
FiniteProgress progress)
Materializes the kNNs and RkNNs of the specified object IDs. |
Uses of FiniteProgress in de.lmu.ifi.dbs.elki.logging.progress |
---|
Subclasses of FiniteProgress in de.lmu.ifi.dbs.elki.logging.progress | |
---|---|
class |
StepProgress
This progress class is used for multi-step processing. |
|
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |