|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use DistanceResultPair | |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. |
de.lmu.ifi.dbs.elki.algorithm.outlier | Outlier detection algorithms |
de.lmu.ifi.dbs.elki.database.query | Database queries - computing distances, neighbors, similarities - API and general documentation. |
de.lmu.ifi.dbs.elki.database.query.knn | Prepared queries for k nearest neighbor (kNN) queries. |
de.lmu.ifi.dbs.elki.database.query.range | Prepared queries for ε-range queries. |
de.lmu.ifi.dbs.elki.database.query.rknn | Prepared queries for reverse k nearest neighbor (rkNN) queries. |
de.lmu.ifi.dbs.elki.distance.distancefunction | Distance functions for use within ELKI. |
de.lmu.ifi.dbs.elki.evaluation.roc | Evaluation of rankings using ROC AUC (Receiver Operation Characteristics - Area Under Curve) |
de.lmu.ifi.dbs.elki.index.preprocessed.knn | Indexes providing KNN and rKNN data. |
de.lmu.ifi.dbs.elki.index.preprocessed.localpca | Index using a preprocessed local PCA. |
de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj | Index using a preprocessed local subspaces. |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees | Metrical index structures based on the concepts of the M-Tree supporting processing of reverse k nearest neighbor queries by using the k-nn distances of the entries. |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | MkAppTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop | MkCoPTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | MkMaxTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab | MkTabTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query | Classes for performing queries (knn, range, ...) on metrical trees. |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query | Queries on the R-Tree family of indexes: kNN and range queries. |
de.lmu.ifi.dbs.elki.math.linearalgebra.pca | Principal Component Analysis (PCA) and Eigenvector processing. |
de.lmu.ifi.dbs.elki.utilities.datastructures.heap | Heap structures and variations such as bounded priority heaps. |
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that return types with arguments of type DistanceResultPair | |
---|---|
private Map<DBID,List<DistanceResultPair<DoubleDistance>>> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the objects in the sphere centered at m with radius minDist are determined, where minDist is the minimum distance between medoid m and any other medoid m_i. |
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.algorithm.outlier |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.outlier that return types with arguments of type DistanceResultPair | |
---|---|
protected List<DistanceResultPair<D>> |
ReferenceBasedOutlierDetection.computeDistanceVector(V refPoint,
Relation<V> database,
DistanceQuery<V,D> distFunc)
Computes for each object the distance to one reference point. |
Method parameters in de.lmu.ifi.dbs.elki.algorithm.outlier with type arguments of type DistanceResultPair | |
---|---|
protected double |
ReferenceBasedOutlierDetection.computeDensity(List<DistanceResultPair<D>> referenceDists,
int index)
Computes the density of an object. |
private ArrayModifiableDBIDs |
OnlineLOF.LOFKNNListener.mergeIDs(List<List<DistanceResultPair<D>>> queryResults,
DBIDs... ids)
Merges the ids of the query result with the specified ids. |
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.database.query |
---|
Classes in de.lmu.ifi.dbs.elki.database.query that implement DistanceResultPair | |
---|---|
class |
DoubleDistanceResultPair
Optimized DistanceResultPair that avoids/postpones an extra layer of boxing for double values. |
class |
GenericDistanceResultPair<D extends Distance<D>>
Trivial implementation using a generic pair. |
Methods in de.lmu.ifi.dbs.elki.database.query with parameters of type DistanceResultPair | |
---|---|
int |
DistanceResultPair.compareByDistance(DistanceResultPair<D> o)
Compare value, but by distance only. |
int |
GenericDistanceResultPair.compareByDistance(DistanceResultPair<D> o)
|
int |
DoubleDistanceResultPair.compareByDistance(DistanceResultPair<DoubleDistance> o)
|
int |
GenericDistanceResultPair.compareTo(DistanceResultPair<D> o)
|
int |
DoubleDistanceResultPair.compareTo(DistanceResultPair<DoubleDistance> o)
|
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.database.query.knn |
---|
Methods in de.lmu.ifi.dbs.elki.database.query.knn that return types with arguments of type DistanceResultPair | |
---|---|
List<List<DistanceResultPair<D>>> |
KNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
Bulk query method |
List<List<DistanceResultPair<D>>> |
PreprocessorKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
|
List<List<DistanceResultPair<D>>> |
LinearScanKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
|
List<List<DistanceResultPair<D>>> |
LinearScanPrimitiveDistanceKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
|
List<DistanceResultPair<D>> |
KNNQuery.getKNNForDBID(DBID id,
int k)
Get the k nearest neighbors for a particular id. |
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceKNNQuery.getKNNForDBID(DBID id,
int k)
|
List<DistanceResultPair<D>> |
PreprocessorKNNQuery.getKNNForDBID(DBID id,
int k)
|
List<DistanceResultPair<D>> |
LinearScanKNNQuery.getKNNForDBID(DBID id,
int k)
|
abstract List<DistanceResultPair<D>> |
AbstractDistanceKNNQuery.getKNNForDBID(DBID id,
int k)
|
List<DistanceResultPair<D>> |
LinearScanPrimitiveDistanceKNNQuery.getKNNForDBID(DBID id,
int k)
|
List<DistanceResultPair<D>> |
KNNQuery.getKNNForObject(O obj,
int k)
Get the k nearest neighbors for a particular id. |
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceKNNQuery.getKNNForObject(O obj,
int k)
|
List<DistanceResultPair<D>> |
PreprocessorKNNQuery.getKNNForObject(O obj,
int k)
|
List<DistanceResultPair<D>> |
LinearScanKNNQuery.getKNNForObject(O obj,
int k)
|
abstract List<DistanceResultPair<D>> |
AbstractDistanceKNNQuery.getKNNForObject(O obj,
int k)
|
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.database.query.range |
---|
Methods in de.lmu.ifi.dbs.elki.database.query.range that return types with arguments of type DistanceResultPair | |
---|---|
List<List<DistanceResultPair<D>>> |
RangeQuery.getRangeForBulkDBIDs(ArrayDBIDs ids,
D range)
Bulk query method |
List<List<DistanceResultPair<D>>> |
AbstractDistanceRangeQuery.getRangeForBulkDBIDs(ArrayDBIDs ids,
D range)
|
List<DistanceResultPair<D>> |
LinearScanPrimitiveDistanceRangeQuery.getRangeForDBID(DBID id,
D range)
|
List<DistanceResultPair<D>> |
RangeQuery.getRangeForDBID(DBID id,
D range)
Get the nearest neighbors for a particular id in a given query range |
abstract List<DistanceResultPair<D>> |
AbstractDistanceRangeQuery.getRangeForDBID(DBID id,
D range)
|
List<DistanceResultPair<D>> |
LinearScanRangeQuery.getRangeForDBID(DBID id,
D range)
|
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceRangeQuery.getRangeForDBID(DBID id,
DoubleDistance range)
|
List<DistanceResultPair<D>> |
RangeQuery.getRangeForObject(O obj,
D range)
Get the nearest neighbors for a particular object in a given query range |
abstract List<DistanceResultPair<D>> |
AbstractDistanceRangeQuery.getRangeForObject(O obj,
D range)
|
List<DistanceResultPair<D>> |
LinearScanRangeQuery.getRangeForObject(O obj,
D range)
|
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceRangeQuery.getRangeForObject(O obj,
DoubleDistance range)
|
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.database.query.rknn |
---|
Methods in de.lmu.ifi.dbs.elki.database.query.rknn that return types with arguments of type DistanceResultPair | |
---|---|
List<List<DistanceResultPair<D>>> |
LinearScanRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
|
List<List<DistanceResultPair<D>>> |
RKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
Bulk query method for reverse k nearest neighbors for ids. |
List<List<DistanceResultPair<D>>> |
PreprocessorRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
|
List<DistanceResultPair<D>> |
LinearScanRKNNQuery.getRKNNForDBID(DBID id,
int k)
|
List<DistanceResultPair<D>> |
RKNNQuery.getRKNNForDBID(DBID id,
int k)
Get the reverse k nearest neighbors for a particular id. |
List<DistanceResultPair<D>> |
PreprocessorRKNNQuery.getRKNNForDBID(DBID id,
int k)
|
abstract List<DistanceResultPair<D>> |
AbstractRKNNQuery.getRKNNForDBID(DBID id,
int k)
|
List<DistanceResultPair<D>> |
LinearScanRKNNQuery.getRKNNForObject(O obj,
int k)
|
List<DistanceResultPair<D>> |
RKNNQuery.getRKNNForObject(O obj,
int k)
Get the reverse k nearest neighbors for a particular object. |
List<DistanceResultPair<D>> |
PreprocessorRKNNQuery.getRKNNForObject(O obj,
int k)
|
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.distance.distancefunction |
---|
Method parameters in de.lmu.ifi.dbs.elki.distance.distancefunction with type arguments of type DistanceResultPair | |
---|---|
protected D |
MinKDistance.computeReachdist(List<DistanceResultPair<D>> neighborhood,
D truedist)
Actually compute the distance, whichever way we obtained the neighborhood above. |
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.evaluation.roc |
---|
Fields in de.lmu.ifi.dbs.elki.evaluation.roc with type parameters of type DistanceResultPair | |
---|---|
private Iterator<DistanceResultPair<D>> |
ROC.DistanceResultAdapter.iter
Original Iterator |
Method parameters in de.lmu.ifi.dbs.elki.evaluation.roc with type arguments of type DistanceResultPair | ||
---|---|---|
static
|
ROC.computeROCAUCDistanceResult(int size,
Cluster<?> clus,
List<DistanceResultPair<D>> nei)
Compute a ROC curves Area-under-curve for a QueryResult and a Cluster. |
|
static
|
ROC.computeROCAUCDistanceResult(int size,
DBIDs ids,
List<DistanceResultPair<D>> nei)
Compute a ROC curves Area-under-curve for a QueryResult and a Cluster. |
Constructor parameters in de.lmu.ifi.dbs.elki.evaluation.roc with type arguments of type DistanceResultPair | |
---|---|
ROC.DistanceResultAdapter(Iterator<DistanceResultPair<D>> iter)
Constructor |
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.preprocessed.knn |
---|
Fields in de.lmu.ifi.dbs.elki.index.preprocessed.knn with type parameters of type DistanceResultPair | |
---|---|
private WritableDataStore<SortedSet<DistanceResultPair<D>>> |
MaterializeKNNAndRKNNPreprocessor.materialized_RkNN
Additional data storage for RkNN. |
Methods in de.lmu.ifi.dbs.elki.index.preprocessed.knn that return types with arguments of type DistanceResultPair | |
---|---|
List<DistanceResultPair<D>> |
MaterializeKNNPreprocessor.get(DBID objid)
Get the k nearest neighbors. |
List<DistanceResultPair<D>> |
MaterializeKNNAndRKNNPreprocessor.getKNN(DBID id)
Returns the materialized kNNs of the specified id. |
List<DistanceResultPair<D>> |
MaterializeKNNAndRKNNPreprocessor.getRKNN(DBID id)
Returns the materialized RkNNs of the specified id. |
Method parameters in de.lmu.ifi.dbs.elki.index.preprocessed.knn with type arguments of type DistanceResultPair | |
---|---|
protected ArrayDBIDs |
MaterializeKNNPreprocessor.extractAndRemoveIDs(List<List<DistanceResultPair<D>>> extraxt,
ArrayDBIDs remove)
Extracts and removes the DBIDs in the given collections. |
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
---|
Methods in de.lmu.ifi.dbs.elki.index.preprocessed.localpca that return types with arguments of type DistanceResultPair | |
---|---|
protected abstract List<DistanceResultPair<DoubleDistance>> |
AbstractFilteredPCAIndex.objectsForPCA(DBID id)
Returns the objects to be considered within the PCA for the specified query object. |
protected List<DistanceResultPair<DoubleDistance>> |
KNNQueryFilteredPCAIndex.objectsForPCA(DBID id)
|
protected List<DistanceResultPair<DoubleDistance>> |
RangeQueryFilteredPCAIndex.objectsForPCA(DBID id)
|
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj |
---|
Method parameters in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj with type arguments of type DistanceResultPair | |
---|---|
protected abstract P |
AbstractSubspaceProjectionIndex.computeProjection(DBID id,
List<DistanceResultPair<D>> neighbors,
Relation<NV> relation)
This method implements the type of variance analysis to be computed for a given point. |
protected SubspaceProjectionResult |
PreDeConSubspaceIndex.computeProjection(DBID id,
List<DistanceResultPair<D>> neighbors,
Relation<V> database)
|
protected PCAFilteredResult |
FourCSubspaceIndex.computeProjection(DBID id,
List<DistanceResultPair<D>> neighbors,
Relation<V> database)
|
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees that return types with arguments of type DistanceResultPair | |
---|---|
abstract List<DistanceResultPair<D>> |
AbstractMkTree.reverseKNNQuery(DBID id,
int k)
Performs a reverse k-nearest neighbor query for the given object ID. |
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp that return types with arguments of type DistanceResultPair | |
---|---|
private List<DistanceResultPair<D>> |
MkAppTree.doReverseKNNQuery(int k,
DBID q)
Performs a reverse knn query. |
List<DistanceResultPair<D>> |
MkAppTree.reverseKNNQuery(DBID id,
int k)
Performs a reverse k-nearest neighbor query for the given object ID. |
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop that return types with arguments of type DistanceResultPair | |
---|---|
List<DistanceResultPair<D>> |
MkCoPTree.reverseKNNQuery(DBID id,
int k)
Performs a reverse k-nearest neighbor query for the given object ID. |
Method parameters in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop with type arguments of type DistanceResultPair | |
---|---|
private void |
MkCoPTree.doReverseKNNQuery(int k,
DBID q,
List<DistanceResultPair<D>> result,
ModifiableDBIDs candidates)
Performs a reverse knn query. |
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax that return types with arguments of type DistanceResultPair | |
---|---|
List<DistanceResultPair<D>> |
MkMaxTree.reverseKNNQuery(DBID id,
int k)
Performs a reverse k-nearest neighbor query for the given object ID. |
Method parameters in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax with type arguments of type DistanceResultPair | |
---|---|
private void |
MkMaxTree.doReverseKNNQuery(DBID q,
MkMaxTreeNode<O,D> node,
MkMaxEntry<D> node_entry,
List<DistanceResultPair<D>> result)
Performs a reverse k-nearest neighbor query in the specified subtree for the given query object with k = AbstractMkTreeUnified.k_max . |
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab that return types with arguments of type DistanceResultPair | |
---|---|
List<DistanceResultPair<D>> |
MkTabTree.reverseKNNQuery(DBID id,
int k)
|
Method parameters in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab with type arguments of type DistanceResultPair | |
---|---|
private void |
MkTabTree.doReverseKNNQuery(int k,
DBID q,
MkTabEntry<D> node_entry,
MkTabTreeNode<O,D> node,
List<DistanceResultPair<D>> result)
Performs a k-nearest neighbor query in the specified subtree for the given query object and the given parameter k. |
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query that return types with arguments of type DistanceResultPair | |
---|---|
List<List<DistanceResultPair<D>>> |
MetricalIndexKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
|
List<DistanceResultPair<D>> |
MetricalIndexKNNQuery.getKNNForDBID(DBID id,
int k)
|
List<DistanceResultPair<D>> |
MetricalIndexKNNQuery.getKNNForObject(O obj,
int k)
|
List<DistanceResultPair<D>> |
MetricalIndexRangeQuery.getRangeForDBID(DBID id,
D range)
|
List<DistanceResultPair<D>> |
MetricalIndexRangeQuery.getRangeForObject(O obj,
D range)
|
List<List<DistanceResultPair<D>>> |
MkTreeRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
|
List<DistanceResultPair<D>> |
MkTreeRKNNQuery.getRKNNForDBID(DBID id,
int k)
|
List<DistanceResultPair<D>> |
MkTreeRKNNQuery.getRKNNForObject(O obj,
int k)
|
Method parameters in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query with type arguments of type DistanceResultPair | |
---|---|
private void |
MetricalIndexRangeQuery.doRangeQuery(DBID o_p,
AbstractMTreeNode<O,D,?,?> node,
DBID q,
D r_q,
List<DistanceResultPair<D>> result)
Performs a range query on the specified subtree. |
private void |
MetricalIndexRangeQuery.doRangeQuery(DBID o_p,
AbstractMTreeNode<O,D,?,?> node,
O q,
D r_q,
List<DistanceResultPair<D>> result)
Performs a range query on the specified subtree. |
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query that return types with arguments of type DistanceResultPair | |
---|---|
protected List<DistanceResultPair<D>> |
GenericRStarTreeRangeQuery.doRangeQuery(O object,
D epsilon)
Perform the actual query process. |
protected List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.doRangeQuery(O object,
double epsilon)
Perform the actual query process. |
List<List<DistanceResultPair<DoubleDistance>>> |
DoubleDistanceRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
|
List<List<DistanceResultPair<D>>> |
GenericRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
|
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeKNNQuery.getKNNForDBID(DBID id,
int k)
|
List<DistanceResultPair<D>> |
GenericRStarTreeKNNQuery.getKNNForDBID(DBID id,
int k)
|
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeKNNQuery.getKNNForObject(O obj,
int k)
|
List<DistanceResultPair<D>> |
GenericRStarTreeKNNQuery.getKNNForObject(O obj,
int k)
|
List<DistanceResultPair<D>> |
GenericRStarTreeRangeQuery.getRangeForDBID(DBID id,
D range)
|
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.getRangeForDBID(DBID id,
DoubleDistance range)
|
List<DistanceResultPair<D>> |
GenericRStarTreeRangeQuery.getRangeForObject(O obj,
D range)
|
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.getRangeForObject(O obj,
DoubleDistance range)
|
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
---|
Method parameters in de.lmu.ifi.dbs.elki.math.linearalgebra.pca with type arguments of type DistanceResultPair | ||
---|---|---|
|
PCARunner.processQueryResult(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
Run PCA on a QueryResult Collection |
|
|
PCAFilteredRunner.processQueryResult(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
Run PCA on a QueryResult Collection |
|
|
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
|
|
|
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds |
|
|
WeightedCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds |
|
|
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k)
|
|
|
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds |
Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.utilities.datastructures.heap |
---|
Fields in de.lmu.ifi.dbs.elki.utilities.datastructures.heap with type parameters of type DistanceResultPair | |
---|---|
(package private) Iterator<? extends DistanceResultPair<?>> |
KNNList.DBIDItr.itr
The real iterator. |
(package private) Iterator<? extends DistanceResultPair<D>> |
KNNList.DistanceItr.itr
The real iterator. |
(package private) List<? extends DistanceResultPair<?>> |
KNNList.DBIDView.parent
The true list. |
(package private) List<? extends DistanceResultPair<D>> |
KNNList.DistanceView.parent
The true list. |
Methods in de.lmu.ifi.dbs.elki.utilities.datastructures.heap that return DistanceResultPair | |
---|---|
DistanceResultPair<D> |
KNNList.remove(int index)
|
DistanceResultPair<D> |
KNNList.set(int index,
DistanceResultPair<D> element)
|
Methods in de.lmu.ifi.dbs.elki.utilities.datastructures.heap that return types with arguments of type DistanceResultPair | |
---|---|
ArrayList<DistanceResultPair<D>> |
KNNHeap.toSortedArrayList()
|
Methods in de.lmu.ifi.dbs.elki.utilities.datastructures.heap with parameters of type DistanceResultPair | |
---|---|
boolean |
KNNList.add(DistanceResultPair<D> e)
|
void |
KNNList.add(int index,
DistanceResultPair<D> element)
|
int |
KNNHeap.Comp.compare(DistanceResultPair<D> o1,
DistanceResultPair<D> o2)
|
int |
KNNHeap.Comp.compare(DistanceResultPair<D> o1,
DistanceResultPair<D> o2)
|
DistanceResultPair<D> |
KNNList.set(int index,
DistanceResultPair<D> element)
|
Method parameters in de.lmu.ifi.dbs.elki.utilities.datastructures.heap with type arguments of type DistanceResultPair | ||
---|---|---|
boolean |
KNNList.addAll(Collection<? extends DistanceResultPair<D>> c)
|
|
boolean |
KNNList.addAll(int index,
Collection<? extends DistanceResultPair<D>> c)
|
|
static ArrayDBIDs |
KNNList.asDBIDs(List<? extends DistanceResultPair<?>> list)
View as ArrayDBIDs |
|
static
|
KNNList.asDistanceList(List<? extends DistanceResultPair<D>> list)
View as list of distances |
Constructor parameters in de.lmu.ifi.dbs.elki.utilities.datastructures.heap with type arguments of type DistanceResultPair | |
---|---|
KNNList.DBIDItr(Iterator<? extends DistanceResultPair<?>> itr)
Constructor. |
|
KNNList.DBIDView(List<? extends DistanceResultPair<?>> parent)
Constructor. |
|
KNNList.DistanceItr(Iterator<? extends DistanceResultPair<D>> itr)
Constructor. |
|
KNNList.DistanceView(List<? extends DistanceResultPair<D>> parent)
Constructor. |
|
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |