Uses of Interface
de.lmu.ifi.dbs.elki.database.query.DistanceResultPair

Packages that use DistanceResultPair
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. 
de.lmu.ifi.dbs.elki.algorithm.outlier Outlier detection algorithms 
de.lmu.ifi.dbs.elki.database.query Database queries - computing distances, neighbors, similarities - API and general documentation. 
de.lmu.ifi.dbs.elki.database.query.knn Prepared queries for k nearest neighbor (kNN) queries. 
de.lmu.ifi.dbs.elki.database.query.range Prepared queries for ε-range queries. 
de.lmu.ifi.dbs.elki.database.query.rknn Prepared queries for reverse k nearest neighbor (rkNN) queries. 
de.lmu.ifi.dbs.elki.distance.distancefunction Distance functions for use within ELKI. 
de.lmu.ifi.dbs.elki.evaluation.roc Evaluation of rankings using ROC AUC (Receiver Operation Characteristics - Area Under Curve) 
de.lmu.ifi.dbs.elki.index.preprocessed.knn Indexes providing KNN and rKNN data. 
de.lmu.ifi.dbs.elki.index.preprocessed.localpca Index using a preprocessed local PCA. 
de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj Index using a preprocessed local subspaces. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees Metrical index structures based on the concepts of the M-Tree supporting processing of reverse k nearest neighbor queries by using the k-nn distances of the entries. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp MkAppTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop MkCoPTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax MkMaxTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab MkTabTree 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query Classes for performing queries (knn, range, ...) on metrical trees. 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query Queries on the R-Tree family of indexes: kNN and range queries. 
de.lmu.ifi.dbs.elki.math.linearalgebra.pca Principal Component Analysis (PCA) and Eigenvector processing. 
de.lmu.ifi.dbs.elki.utilities.datastructures.heap Heap structures and variations such as bounded priority heaps. 
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that return types with arguments of type DistanceResultPair
private  Map<DBID,List<DistanceResultPair<DoubleDistance>>> PROCLUS.getLocalities(DBIDs medoids, Relation<V> database, DistanceQuery<V,DoubleDistance> distFunc, RangeQuery<V,DoubleDistance> rangeQuery)
          Computes the localities of the specified medoids: for each medoid m the objects in the sphere centered at m with radius minDist are determined, where minDist is the minimum distance between medoid m and any other medoid m_i.
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.algorithm.outlier
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier that return types with arguments of type DistanceResultPair
protected  List<DistanceResultPair<D>> ReferenceBasedOutlierDetection.computeDistanceVector(V refPoint, Relation<V> database, DistanceQuery<V,D> distFunc)
          Computes for each object the distance to one reference point.
 

Method parameters in de.lmu.ifi.dbs.elki.algorithm.outlier with type arguments of type DistanceResultPair
protected  double ReferenceBasedOutlierDetection.computeDensity(List<DistanceResultPair<D>> referenceDists, int index)
          Computes the density of an object.
private  ArrayModifiableDBIDs OnlineLOF.LOFKNNListener.mergeIDs(List<List<DistanceResultPair<D>>> queryResults, DBIDs... ids)
          Merges the ids of the query result with the specified ids.
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.database.query
 

Classes in de.lmu.ifi.dbs.elki.database.query that implement DistanceResultPair
 class DoubleDistanceResultPair
          Optimized DistanceResultPair that avoids/postpones an extra layer of boxing for double values.
 class GenericDistanceResultPair<D extends Distance<D>>
          Trivial implementation using a generic pair.
 

Methods in de.lmu.ifi.dbs.elki.database.query with parameters of type DistanceResultPair
 int DistanceResultPair.compareByDistance(DistanceResultPair<D> o)
          Compare value, but by distance only.
 int GenericDistanceResultPair.compareByDistance(DistanceResultPair<D> o)
           
 int DoubleDistanceResultPair.compareByDistance(DistanceResultPair<DoubleDistance> o)
           
 int GenericDistanceResultPair.compareTo(DistanceResultPair<D> o)
           
 int DoubleDistanceResultPair.compareTo(DistanceResultPair<DoubleDistance> o)
           
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.database.query.knn
 

Methods in de.lmu.ifi.dbs.elki.database.query.knn that return types with arguments of type DistanceResultPair
 List<List<DistanceResultPair<D>>> KNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids, int k)
          Bulk query method
 List<List<DistanceResultPair<D>>> PreprocessorKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 List<List<DistanceResultPair<D>>> LinearScanKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 List<List<DistanceResultPair<D>>> LinearScanPrimitiveDistanceKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 List<DistanceResultPair<D>> KNNQuery.getKNNForDBID(DBID id, int k)
          Get the k nearest neighbors for a particular id.
 List<DistanceResultPair<DoubleDistance>> LinearScanRawDoubleDistanceKNNQuery.getKNNForDBID(DBID id, int k)
           
 List<DistanceResultPair<D>> PreprocessorKNNQuery.getKNNForDBID(DBID id, int k)
           
 List<DistanceResultPair<D>> LinearScanKNNQuery.getKNNForDBID(DBID id, int k)
           
abstract  List<DistanceResultPair<D>> AbstractDistanceKNNQuery.getKNNForDBID(DBID id, int k)
           
 List<DistanceResultPair<D>> LinearScanPrimitiveDistanceKNNQuery.getKNNForDBID(DBID id, int k)
           
 List<DistanceResultPair<D>> KNNQuery.getKNNForObject(O obj, int k)
          Get the k nearest neighbors for a particular id.
 List<DistanceResultPair<DoubleDistance>> LinearScanRawDoubleDistanceKNNQuery.getKNNForObject(O obj, int k)
           
 List<DistanceResultPair<D>> PreprocessorKNNQuery.getKNNForObject(O obj, int k)
           
 List<DistanceResultPair<D>> LinearScanKNNQuery.getKNNForObject(O obj, int k)
           
abstract  List<DistanceResultPair<D>> AbstractDistanceKNNQuery.getKNNForObject(O obj, int k)
           
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.database.query.range
 

Methods in de.lmu.ifi.dbs.elki.database.query.range that return types with arguments of type DistanceResultPair
 List<List<DistanceResultPair<D>>> RangeQuery.getRangeForBulkDBIDs(ArrayDBIDs ids, D range)
          Bulk query method
 List<List<DistanceResultPair<D>>> AbstractDistanceRangeQuery.getRangeForBulkDBIDs(ArrayDBIDs ids, D range)
           
 List<DistanceResultPair<D>> LinearScanPrimitiveDistanceRangeQuery.getRangeForDBID(DBID id, D range)
           
 List<DistanceResultPair<D>> RangeQuery.getRangeForDBID(DBID id, D range)
          Get the nearest neighbors for a particular id in a given query range
abstract  List<DistanceResultPair<D>> AbstractDistanceRangeQuery.getRangeForDBID(DBID id, D range)
           
 List<DistanceResultPair<D>> LinearScanRangeQuery.getRangeForDBID(DBID id, D range)
           
 List<DistanceResultPair<DoubleDistance>> LinearScanRawDoubleDistanceRangeQuery.getRangeForDBID(DBID id, DoubleDistance range)
           
 List<DistanceResultPair<D>> RangeQuery.getRangeForObject(O obj, D range)
          Get the nearest neighbors for a particular object in a given query range
abstract  List<DistanceResultPair<D>> AbstractDistanceRangeQuery.getRangeForObject(O obj, D range)
           
 List<DistanceResultPair<D>> LinearScanRangeQuery.getRangeForObject(O obj, D range)
           
 List<DistanceResultPair<DoubleDistance>> LinearScanRawDoubleDistanceRangeQuery.getRangeForObject(O obj, DoubleDistance range)
           
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.database.query.rknn
 

Methods in de.lmu.ifi.dbs.elki.database.query.rknn that return types with arguments of type DistanceResultPair
 List<List<DistanceResultPair<D>>> LinearScanRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 List<List<DistanceResultPair<D>>> RKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids, int k)
          Bulk query method for reverse k nearest neighbors for ids.
 List<List<DistanceResultPair<D>>> PreprocessorRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 List<DistanceResultPair<D>> LinearScanRKNNQuery.getRKNNForDBID(DBID id, int k)
           
 List<DistanceResultPair<D>> RKNNQuery.getRKNNForDBID(DBID id, int k)
          Get the reverse k nearest neighbors for a particular id.
 List<DistanceResultPair<D>> PreprocessorRKNNQuery.getRKNNForDBID(DBID id, int k)
           
abstract  List<DistanceResultPair<D>> AbstractRKNNQuery.getRKNNForDBID(DBID id, int k)
           
 List<DistanceResultPair<D>> LinearScanRKNNQuery.getRKNNForObject(O obj, int k)
           
 List<DistanceResultPair<D>> RKNNQuery.getRKNNForObject(O obj, int k)
          Get the reverse k nearest neighbors for a particular object.
 List<DistanceResultPair<D>> PreprocessorRKNNQuery.getRKNNForObject(O obj, int k)
           
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.distance.distancefunction
 

Method parameters in de.lmu.ifi.dbs.elki.distance.distancefunction with type arguments of type DistanceResultPair
protected  D MinKDistance.computeReachdist(List<DistanceResultPair<D>> neighborhood, D truedist)
          Actually compute the distance, whichever way we obtained the neighborhood above.
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.evaluation.roc
 

Fields in de.lmu.ifi.dbs.elki.evaluation.roc with type parameters of type DistanceResultPair
private  Iterator<DistanceResultPair<D>> ROC.DistanceResultAdapter.iter
          Original Iterator
 

Method parameters in de.lmu.ifi.dbs.elki.evaluation.roc with type arguments of type DistanceResultPair
static
<D extends Distance<D>>
double
ROC.computeROCAUCDistanceResult(int size, Cluster<?> clus, List<DistanceResultPair<D>> nei)
          Compute a ROC curves Area-under-curve for a QueryResult and a Cluster.
static
<D extends Distance<D>>
double
ROC.computeROCAUCDistanceResult(int size, DBIDs ids, List<DistanceResultPair<D>> nei)
          Compute a ROC curves Area-under-curve for a QueryResult and a Cluster.
 

Constructor parameters in de.lmu.ifi.dbs.elki.evaluation.roc with type arguments of type DistanceResultPair
ROC.DistanceResultAdapter(Iterator<DistanceResultPair<D>> iter)
          Constructor
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.preprocessed.knn
 

Fields in de.lmu.ifi.dbs.elki.index.preprocessed.knn with type parameters of type DistanceResultPair
private  WritableDataStore<SortedSet<DistanceResultPair<D>>> MaterializeKNNAndRKNNPreprocessor.materialized_RkNN
          Additional data storage for RkNN.
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed.knn that return types with arguments of type DistanceResultPair
 List<DistanceResultPair<D>> MaterializeKNNPreprocessor.get(DBID objid)
          Get the k nearest neighbors.
 List<DistanceResultPair<D>> MaterializeKNNAndRKNNPreprocessor.getKNN(DBID id)
          Returns the materialized kNNs of the specified id.
 List<DistanceResultPair<D>> MaterializeKNNAndRKNNPreprocessor.getRKNN(DBID id)
          Returns the materialized RkNNs of the specified id.
 

Method parameters in de.lmu.ifi.dbs.elki.index.preprocessed.knn with type arguments of type DistanceResultPair
protected  ArrayDBIDs MaterializeKNNPreprocessor.extractAndRemoveIDs(List<List<DistanceResultPair<D>>> extraxt, ArrayDBIDs remove)
          Extracts and removes the DBIDs in the given collections.
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed.localpca that return types with arguments of type DistanceResultPair
protected abstract  List<DistanceResultPair<DoubleDistance>> AbstractFilteredPCAIndex.objectsForPCA(DBID id)
          Returns the objects to be considered within the PCA for the specified query object.
protected  List<DistanceResultPair<DoubleDistance>> KNNQueryFilteredPCAIndex.objectsForPCA(DBID id)
           
protected  List<DistanceResultPair<DoubleDistance>> RangeQueryFilteredPCAIndex.objectsForPCA(DBID id)
           
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj
 

Method parameters in de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj with type arguments of type DistanceResultPair
protected abstract  P AbstractSubspaceProjectionIndex.computeProjection(DBID id, List<DistanceResultPair<D>> neighbors, Relation<NV> relation)
          This method implements the type of variance analysis to be computed for a given point.
protected  SubspaceProjectionResult PreDeConSubspaceIndex.computeProjection(DBID id, List<DistanceResultPair<D>> neighbors, Relation<V> database)
           
protected  PCAFilteredResult FourCSubspaceIndex.computeProjection(DBID id, List<DistanceResultPair<D>> neighbors, Relation<V> database)
           
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees that return types with arguments of type DistanceResultPair
abstract  List<DistanceResultPair<D>> AbstractMkTree.reverseKNNQuery(DBID id, int k)
          Performs a reverse k-nearest neighbor query for the given object ID.
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp that return types with arguments of type DistanceResultPair
private  List<DistanceResultPair<D>> MkAppTree.doReverseKNNQuery(int k, DBID q)
          Performs a reverse knn query.
 List<DistanceResultPair<D>> MkAppTree.reverseKNNQuery(DBID id, int k)
          Performs a reverse k-nearest neighbor query for the given object ID.
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop that return types with arguments of type DistanceResultPair
 List<DistanceResultPair<D>> MkCoPTree.reverseKNNQuery(DBID id, int k)
          Performs a reverse k-nearest neighbor query for the given object ID.
 

Method parameters in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop with type arguments of type DistanceResultPair
private  void MkCoPTree.doReverseKNNQuery(int k, DBID q, List<DistanceResultPair<D>> result, ModifiableDBIDs candidates)
          Performs a reverse knn query.
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax that return types with arguments of type DistanceResultPair
 List<DistanceResultPair<D>> MkMaxTree.reverseKNNQuery(DBID id, int k)
          Performs a reverse k-nearest neighbor query for the given object ID.
 

Method parameters in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax with type arguments of type DistanceResultPair
private  void MkMaxTree.doReverseKNNQuery(DBID q, MkMaxTreeNode<O,D> node, MkMaxEntry<D> node_entry, List<DistanceResultPair<D>> result)
          Performs a reverse k-nearest neighbor query in the specified subtree for the given query object with k = AbstractMkTreeUnified.k_max.
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab that return types with arguments of type DistanceResultPair
 List<DistanceResultPair<D>> MkTabTree.reverseKNNQuery(DBID id, int k)
           
 

Method parameters in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab with type arguments of type DistanceResultPair
private  void MkTabTree.doReverseKNNQuery(int k, DBID q, MkTabEntry<D> node_entry, MkTabTreeNode<O,D> node, List<DistanceResultPair<D>> result)
          Performs a k-nearest neighbor query in the specified subtree for the given query object and the given parameter k.
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query that return types with arguments of type DistanceResultPair
 List<List<DistanceResultPair<D>>> MetricalIndexKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 List<DistanceResultPair<D>> MetricalIndexKNNQuery.getKNNForDBID(DBID id, int k)
           
 List<DistanceResultPair<D>> MetricalIndexKNNQuery.getKNNForObject(O obj, int k)
           
 List<DistanceResultPair<D>> MetricalIndexRangeQuery.getRangeForDBID(DBID id, D range)
           
 List<DistanceResultPair<D>> MetricalIndexRangeQuery.getRangeForObject(O obj, D range)
           
 List<List<DistanceResultPair<D>>> MkTreeRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 List<DistanceResultPair<D>> MkTreeRKNNQuery.getRKNNForDBID(DBID id, int k)
           
 List<DistanceResultPair<D>> MkTreeRKNNQuery.getRKNNForObject(O obj, int k)
           
 

Method parameters in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query with type arguments of type DistanceResultPair
private  void MetricalIndexRangeQuery.doRangeQuery(DBID o_p, AbstractMTreeNode<O,D,?,?> node, DBID q, D r_q, List<DistanceResultPair<D>> result)
          Performs a range query on the specified subtree.
private  void MetricalIndexRangeQuery.doRangeQuery(DBID o_p, AbstractMTreeNode<O,D,?,?> node, O q, D r_q, List<DistanceResultPair<D>> result)
          Performs a range query on the specified subtree.
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query
 

Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query that return types with arguments of type DistanceResultPair
protected  List<DistanceResultPair<D>> GenericRStarTreeRangeQuery.doRangeQuery(O object, D epsilon)
          Perform the actual query process.
protected  List<DistanceResultPair<DoubleDistance>> DoubleDistanceRStarTreeRangeQuery.doRangeQuery(O object, double epsilon)
          Perform the actual query process.
 List<List<DistanceResultPair<DoubleDistance>>> DoubleDistanceRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 List<List<DistanceResultPair<D>>> GenericRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 List<DistanceResultPair<DoubleDistance>> DoubleDistanceRStarTreeKNNQuery.getKNNForDBID(DBID id, int k)
           
 List<DistanceResultPair<D>> GenericRStarTreeKNNQuery.getKNNForDBID(DBID id, int k)
           
 List<DistanceResultPair<DoubleDistance>> DoubleDistanceRStarTreeKNNQuery.getKNNForObject(O obj, int k)
           
 List<DistanceResultPair<D>> GenericRStarTreeKNNQuery.getKNNForObject(O obj, int k)
           
 List<DistanceResultPair<D>> GenericRStarTreeRangeQuery.getRangeForDBID(DBID id, D range)
           
 List<DistanceResultPair<DoubleDistance>> DoubleDistanceRStarTreeRangeQuery.getRangeForDBID(DBID id, DoubleDistance range)
           
 List<DistanceResultPair<D>> GenericRStarTreeRangeQuery.getRangeForObject(O obj, D range)
           
 List<DistanceResultPair<DoubleDistance>> DoubleDistanceRStarTreeRangeQuery.getRangeForObject(O obj, DoubleDistance range)
           
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.math.linearalgebra.pca
 

Method parameters in de.lmu.ifi.dbs.elki.math.linearalgebra.pca with type arguments of type DistanceResultPair
<D extends NumberDistance<?,?>>
PCAResult
PCARunner.processQueryResult(Collection<DistanceResultPair<D>> results, Relation<? extends V> database)
          Run PCA on a QueryResult Collection
<D extends NumberDistance<?,?>>
PCAFilteredResult
PCAFilteredRunner.processQueryResult(Collection<DistanceResultPair<D>> results, Relation<? extends V> database)
          Run PCA on a QueryResult Collection
<D extends NumberDistance<?,?>>
Matrix
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results, Relation<? extends V> database)
           
<D extends NumberDistance<?,?>>
Matrix
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results, Relation<? extends V> database)
          Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds
<D extends NumberDistance<?,?>>
Matrix
WeightedCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results, Relation<? extends V> database, int k)
          Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds
<D extends NumberDistance<?,?>>
Matrix
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results, Relation<? extends V> database, int k)
           
<D extends NumberDistance<?,?>>
Matrix
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results, Relation<? extends V> database, int k)
          Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds
 

Uses of DistanceResultPair in de.lmu.ifi.dbs.elki.utilities.datastructures.heap
 

Fields in de.lmu.ifi.dbs.elki.utilities.datastructures.heap with type parameters of type DistanceResultPair
(package private)  Iterator<? extends DistanceResultPair<?>> KNNList.DBIDItr.itr
          The real iterator.
(package private)  Iterator<? extends DistanceResultPair<D>> KNNList.DistanceItr.itr
          The real iterator.
(package private)  List<? extends DistanceResultPair<?>> KNNList.DBIDView.parent
          The true list.
(package private)  List<? extends DistanceResultPair<D>> KNNList.DistanceView.parent
          The true list.
 

Methods in de.lmu.ifi.dbs.elki.utilities.datastructures.heap that return DistanceResultPair
 DistanceResultPair<D> KNNList.remove(int index)
           
 DistanceResultPair<D> KNNList.set(int index, DistanceResultPair<D> element)
           
 

Methods in de.lmu.ifi.dbs.elki.utilities.datastructures.heap that return types with arguments of type DistanceResultPair
 ArrayList<DistanceResultPair<D>> KNNHeap.toSortedArrayList()
           
 

Methods in de.lmu.ifi.dbs.elki.utilities.datastructures.heap with parameters of type DistanceResultPair
 boolean KNNList.add(DistanceResultPair<D> e)
           
 void KNNList.add(int index, DistanceResultPair<D> element)
           
 int KNNHeap.Comp.compare(DistanceResultPair<D> o1, DistanceResultPair<D> o2)
           
 int KNNHeap.Comp.compare(DistanceResultPair<D> o1, DistanceResultPair<D> o2)
           
 DistanceResultPair<D> KNNList.set(int index, DistanceResultPair<D> element)
           
 

Method parameters in de.lmu.ifi.dbs.elki.utilities.datastructures.heap with type arguments of type DistanceResultPair
 boolean KNNList.addAll(Collection<? extends DistanceResultPair<D>> c)
           
 boolean KNNList.addAll(int index, Collection<? extends DistanceResultPair<D>> c)
           
static ArrayDBIDs KNNList.asDBIDs(List<? extends DistanceResultPair<?>> list)
          View as ArrayDBIDs
static
<D extends Distance<D>>
List<D>
KNNList.asDistanceList(List<? extends DistanceResultPair<D>> list)
          View as list of distances
 

Constructor parameters in de.lmu.ifi.dbs.elki.utilities.datastructures.heap with type arguments of type DistanceResultPair
KNNList.DBIDItr(Iterator<? extends DistanceResultPair<?>> itr)
          Constructor.
KNNList.DBIDView(List<? extends DistanceResultPair<?>> parent)
          Constructor.
KNNList.DistanceItr(Iterator<? extends DistanceResultPair<D>> itr)
          Constructor.
KNNList.DistanceView(List<? extends DistanceResultPair<D>> parent)
          Constructor.
 


Release 0.4.0 (2011-09-20_1324)