Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms
Clustering algorithms are supposed to implement the
Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.em |
Expectation-Maximization clustering algorithm.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.birch |
BIRCH clustering.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization |
Initialization strategies for k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality |
Quality measures for k-Means results.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.clustering |
Clustering based outlier detection.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation
|
Modifier and Type | Method and Description |
---|---|
Clustering<MeanModel> |
NaiveMeanShiftClustering.run(Database database,
Relation<V> relation)
Run the mean-shift clustering algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractEMModelFactory<V extends NumberVector,M extends MeanModel>
Abstract base class for initializing EM.
|
class |
EM<V extends NumberVector,M extends MeanModel>
Clustering by expectation maximization (EM-Algorithm), also known as Gaussian
Mixture Modeling (GMM), with optional MAP regularization.
|
static class |
EM.Parameterizer<V extends NumberVector,M extends MeanModel>
Parameterization class.
|
interface |
EMClusterModel<M extends MeanModel>
Models useable in EM clustering.
|
interface |
EMClusterModelFactory<V extends NumberVector,M extends MeanModel>
Factory for initializing the EM models.
|
Modifier and Type | Method and Description |
---|---|
Clustering<MeanModel> |
BIRCHLeafClustering.run(Relation<NumberVector> relation)
Run the clustering algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
BestOfMultipleKMeans<V extends NumberVector,M extends MeanModel>
Run K-Means multiple times, and keep the best run.
|
static class |
BestOfMultipleKMeans.Parameterizer<V extends NumberVector,M extends MeanModel>
Parameterization class.
|
class |
KMeansBisecting<V extends NumberVector,M extends MeanModel>
The bisecting k-means algorithm works by starting with an initial
partitioning into two clusters, then repeated splitting of the largest
cluster to get additional clusters.
|
static class |
KMeansBisecting.Parameterizer<V extends NumberVector,M extends MeanModel>
Parameterization class.
|
class |
XMeans<V extends NumberVector,M extends MeanModel>
X-means: Extending K-means with Efficient Estimation on the Number of
Clusters.
|
static class |
XMeans.Parameterizer<V extends NumberVector,M extends MeanModel>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
protected Clustering<MeanModel> |
KMediansLloyd.Instance.buildMediansResult() |
Clustering<MeanModel> |
KMediansLloyd.run(Database database,
Relation<V> relation) |
Modifier and Type | Method and Description |
---|---|
protected double[][] |
XMeans.splitCentroid(Cluster<? extends MeanModel> parentCluster,
Relation<V> relation)
Split an existing centroid into two initial centers.
|
Modifier and Type | Method and Description |
---|---|
void |
PredefinedInitialMeans.setInitialClusters(java.util.List<? extends Cluster<? extends MeanModel>> initialMeans)
Set the initial means.
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector> |
AbstractKMeansQualityMeasure.logLikelihood(Relation<V> relation,
Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering.
|
static <V extends NumberVector> |
BayesianInformationCriterionZhao.logLikelihoodZhao(Relation<V> relation,
Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering.
|
static int |
AbstractKMeansQualityMeasure.numberOfFreeParameters(Relation<? extends NumberVector> relation,
Clustering<? extends MeanModel> clustering)
Compute the number of free parameters.
|
static int |
AbstractKMeansQualityMeasure.numPoints(Clustering<? extends MeanModel> clustering)
Compute the number of points in a given set of clusters (which may be
less than the complete data set for X-means!)
|
<V extends NumberVector> |
BayesianInformationCriterion.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
BayesianInformationCriterionZhao.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
WithinClusterVarianceQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
AkaikeInformationCriterion.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends NumberVector> |
WithinClusterMeanDistanceQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation) |
<V extends O> |
KMeansQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation)
Calculates and returns the quality measure.
|
static <V extends NumberVector> |
AbstractKMeansQualityMeasure.varianceOfCluster(Cluster<? extends MeanModel> cluster,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation)
Variance contribution of a single cluster.
|
Modifier and Type | Field and Description |
---|---|
protected ClusteringAlgorithm<Clustering<MeanModel>> |
CBLOF.clusteringAlgorithm
The clustering algorithm to use.
|
protected ClusteringAlgorithm<Clustering<MeanModel>> |
CBLOF.Parameterizer.clusteringAlgorithm
The clustering algorithm to use.
|
Modifier and Type | Method and Description |
---|---|
private void |
CBLOF.computeCBLOFs(Relation<O> relation,
NumberVectorDistanceFunction<? super O> distance,
WritableDoubleDataStore cblofs,
DoubleMinMax cblofMinMax,
java.util.List<? extends Cluster<MeanModel>> largeClusters,
java.util.List<? extends Cluster<MeanModel>> smallClusters)
Compute the CBLOF scores for all the data.
|
private void |
CBLOF.computeCBLOFs(Relation<O> relation,
NumberVectorDistanceFunction<? super O> distance,
WritableDoubleDataStore cblofs,
DoubleMinMax cblofMinMax,
java.util.List<? extends Cluster<MeanModel>> largeClusters,
java.util.List<? extends Cluster<MeanModel>> smallClusters)
Compute the CBLOF scores for all the data.
|
private double |
CBLOF.computeLargeClusterCBLOF(O obj,
NumberVectorDistanceFunction<? super O> distanceQuery,
NumberVector clusterMean,
Cluster<MeanModel> cluster) |
private double |
CBLOF.computeSmallClusterCBLOF(O obj,
NumberVectorDistanceFunction<? super O> distance,
java.util.List<NumberVector> largeClusterMeans,
Cluster<MeanModel> cluster) |
private int |
CBLOF.getClusterBoundary(Relation<O> relation,
java.util.List<? extends Cluster<MeanModel>> clusters)
Compute the boundary index separating the large cluster from the small
cluster.
|
Constructor and Description |
---|
CBLOF(NumberVectorDistanceFunction<? super O> distanceFunction,
ClusteringAlgorithm<Clustering<MeanModel>> clusteringAlgorithm,
double alpha,
double beta)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
EMModel
Cluster model of an EM cluster, providing a mean and a full covariance
Matrix.
|
class |
GeneratorModel
Cluster model for synthetically generated data.
|
class |
KMeansModel
Trivial subclass of the
MeanModel that indicates the clustering to be
produced by k-means (so the Voronoi cell visualization is sensible). |
class |
SubspaceModel
Model for Subspace Clusters.
|
Modifier and Type | Method and Description |
---|---|
Clustering<MeanModel> |
SameSizeKMeansAlgorithm.run(Database database,
Relation<V> relation)
Run k-means with cluster size constraints.
|
Copyright © 2019 ELKI Development Team. License information.