Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.meta |
Meta clustering algorithms, that get their result from other clusterings or external sources.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in evaluation.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.trivial |
Trivial outlier detection algorithms: no outliers, all outliers, label outliers.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.data.synthetic.bymodel |
Generator using a distribution model specified in an XML configuration file.
|
de.lmu.ifi.dbs.elki.data.type |
Data type information, also used for type restrictions.
|
de.lmu.ifi.dbs.elki.datasource.parser |
Parsers for different file formats and data types.
|
de.lmu.ifi.dbs.elki.evaluation.clustering |
Evaluation of clustering results.
|
de.lmu.ifi.dbs.elki.evaluation.outlier |
Evaluate an outlier score using a misclassification based cost model.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.result.textwriter |
Text serialization (CSV, Gnuplot, Console, ...)
|
de.lmu.ifi.dbs.elki.visualization |
Visualization package of ELKI.
|
de.lmu.ifi.dbs.elki.visualization.opticsplot |
Code for drawing OPTICS plots
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster |
Visualizers for clustering results based on 2D projections.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj |
Visualizers that do not use a particular projection.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ClusteringAlgorithm<C extends Clustering<? extends Model>>
Interface for Algorithms that are capable to provide a
Clustering as Result. in general, clustering algorithms are supposed to
implement the Algorithm -Interface. |
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
SNNClustering.run(Database database,
Relation<O> relation)
Perform SNN clustering
|
Clustering<Model> |
DBSCAN.run(Relation<O> relation)
Performs the DBSCAN algorithm on the given database.
|
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
CASH.doRun(Relation<ParameterizationFunction> relation,
FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is
recursively called until only noise is left.
|
Clustering<Model> |
LMCLUS.run(Database database,
Relation<NumberVector> relation)
The main LMCLUS (Linear manifold clustering algorithm) is processed in this
method.
|
Clustering<Model> |
ORCLUS.run(Database database,
Relation<V> relation)
Performs the ORCLUS algorithm on the given database.
|
Clustering<Model> |
CASH.run(Database database,
Relation<V> vrel)
Run CASH on the relation.
|
Modifier and Type | Method and Description |
---|---|
private List<List<Cluster<CorrelationModel<V>>>> |
ERiC.extractCorrelationClusters(Clustering<Model> dbscanResult,
Relation<V> database,
int dimensionality,
ERiCNeighborPredicate.Instance npred)
Extracts the correlation clusters and noise from the copac result and
returns a mapping of correlation dimension to maps of clusters within this
correlation dimension.
|
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
GeneralizedDBSCAN.Instance.run()
Run the actual GDBSCAN algorithm.
|
Clustering<Model> |
GeneralizedDBSCAN.run(Database database) |
Clustering<Model> |
LSDBC.run(Database database,
Relation<O> relation)
Run the LSDBC algorithm
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKMeans<V extends NumberVector,M extends Model>
Abstract base class for k-means implementations.
|
interface |
KMeans<V extends NumberVector,M extends Model>
Some constants and options shared among kmeans family algorithms.
|
Modifier and Type | Method and Description |
---|---|
Clustering<? extends Model> |
ExternalClustering.run(Database database)
Run the algorithm.
|
Modifier and Type | Method and Description |
---|---|
private List<Cluster<Model>> |
SUBCLU.runDBSCAN(Relation<V> relation,
DBIDs ids,
Subspace subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the
given subspace.
|
Modifier and Type | Method and Description |
---|---|
private Subspace |
SUBCLU.bestSubspace(List<Subspace> subspaces,
Subspace candidate,
TreeMap<Subspace,List<Cluster<Model>>> clusterMap)
Determines the
d -dimensional subspace of the (d+1)
-dimensional candidate with minimal number of objects in the cluster. |
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
ByLabelOrAllInOneClustering.run(Database database) |
Clustering<Model> |
ByLabelHierarchicalClustering.run(Database database) |
Clustering<Model> |
ByLabelClustering.run(Database database) |
Clustering<Model> |
TrivialAllNoise.run(Relation<?> relation) |
Clustering<Model> |
TrivialAllInOne.run(Relation<?> relation) |
Clustering<Model> |
ByLabelHierarchicalClustering.run(Relation<?> relation)
Run the actual clustering algorithm.
|
Clustering<Model> |
ByLabelClustering.run(Relation<?> relation)
Run the actual clustering algorithm.
|
Clustering<Model> |
ByModelClustering.run(Relation<Model> relation)
Run the actual clustering algorithm.
|
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
ByModelClustering.run(Relation<Model> relation)
Run the actual clustering algorithm.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
TrivialGeneratedOutlier.run(Relation<Model> models,
Relation<NumberVector> vecs,
Relation<?> labels)
Run the algorithm
|
Modifier and Type | Class and Description |
---|---|
class |
Cluster<M extends Model>
Generic cluster class, that may or not have hierarchical information.
|
class |
Clustering<M extends Model>
Result class for clusterings.
|
Modifier and Type | Field and Description |
---|---|
private M |
Cluster.model
Cluster model.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractModel
Abstract base class for Cluster Models.
|
class |
BiclusterModel
Wrapper class to provide the basic properties of a Bicluster.
|
class |
BiclusterWithInversionsModel
This code was factored out of the Bicluster class, since not all biclusters
have inverted rows.
|
class |
ClusterModel
Generic cluster model.
|
class |
CoreObjectsModel
Cluster model using "core" objects.
|
class |
CorrelationAnalysisSolution<V extends NumberVector>
A solution of correlation analysis is a matrix of equations describing the
dependencies.
|
class |
CorrelationModel<V extends FeatureVector<?>>
Cluster model using a filtered PCA result and an centroid.
|
class |
DendrogramModel
Model for dendrograms, provides the distance to the child cluster.
|
class |
DimensionModel
Cluster model just providing a cluster dimensionality.
|
class |
EMModel
Cluster model of an EM cluster, providing a mean and a full covariance
Matrix.
|
class |
KMeansModel
Trivial subclass of the
MeanModel that indicates the clustering to be
produced by k-means (so the Voronoi cell visualization is sensible). |
class |
LinearEquationModel
Cluster model containing a linear equation system for the cluster.
|
class |
MeanModel
Cluster model that stores a mean for the cluster.
|
class |
MedoidModel
Cluster model that stores a mean for the cluster.
|
class |
OPTICSModel
Model for an OPTICS cluster
|
class |
PrototypeModel<V>
Cluster model that stores a prototype for each cluster.
|
class |
SubspaceModel
Model for Subspace Clusters.
|
Modifier and Type | Method and Description |
---|---|
static NumberVector |
ModelUtil.getPrototype(Model model,
Relation<? extends NumberVector> relation)
Get the representative vector for a cluster model.
|
static <V extends NumberVector> |
ModelUtil.getPrototype(Model model,
Relation<? extends V> relation,
NumberVector.Factory<V> factory)
Get (and convert!)
|
static NumberVector |
ModelUtil.getPrototypeOrCentroid(Model model,
Relation<? extends NumberVector> relation,
DBIDs ids)
Get the representative vector for a cluster model, or compute the centroid.
|
static <V extends NumberVector> |
ModelUtil.getPrototypeOrCentroid(Model model,
Relation<? extends V> relation,
DBIDs ids,
NumberVector.Factory<V> factory)
Get the representative vector for a cluster model, or compute the centroid.
|
Modifier and Type | Class and Description |
---|---|
class |
GeneratorSingleCluster
Class to generate a single cluster according to a model as well as getting
the density of a given model at that point (to evaluate generated points
according to the same model)
|
Modifier and Type | Method and Description |
---|---|
Model |
GeneratorStatic.makeModel() |
Model |
GeneratorSingleCluster.makeModel()
Make a cluster model for this cluster.
|
Model |
GeneratorInterface.makeModel()
Make a cluster model for this cluster.
|
Modifier and Type | Method and Description |
---|---|
private void |
GeneratorMain.initLabelsAndModels(ArrayList<GeneratorInterface> generators,
ClassLabel[] labels,
Model[] models,
Pattern reassign)
Initialize cluster labels and models.
|
Modifier and Type | Field and Description |
---|---|
static SimpleTypeInformation<Model> |
TypeUtil.MODEL
Cluster model type.
|
Modifier and Type | Field and Description |
---|---|
(package private) Clustering<Model> |
ClusteringVectorParser.curclu
Current clustering.
|
Modifier and Type | Method and Description |
---|---|
static <C extends Model> |
LogClusterSizes.logClusterSizes(Clustering<C> c)
Log the cluster sizes of a clustering.
|
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
OutlierThresholdClustering.split(OutlierResult or) |
Modifier and Type | Method and Description |
---|---|
static List<Clustering<? extends Model>> |
ResultUtil.getClusteringResults(Result r)
Collect all clustering results from a Result
|
Modifier and Type | Method and Description |
---|---|
private DoubleObjPair<Polygon> |
KMLOutputHandler.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls,
Relation<? extends NumberVector> coords)
Recursively step through the clusters to build the hulls.
|
private DoubleObjPair<Polygon> |
KMLOutputHandler.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls,
Relation<? extends NumberVector> coords)
Recursively step through the clusters to build the hulls.
|
private void |
KMLOutputHandler.writeClusteringResult(XMLStreamWriter xmlw,
Clustering<Model> clustering,
Database database) |
Modifier and Type | Method and Description |
---|---|
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Clustering<Model> clustering,
Cluster<Model> clus,
List<Relation<?>> ra,
NamingScheme naming) |
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Clustering<Model> clustering,
Cluster<Model> clus,
List<Relation<?>> ra,
NamingScheme naming) |
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
VisualizerContext.generateDefaultClustering()
Generate a default (fallback) clustering.
|
Modifier and Type | Method and Description |
---|---|
static <E extends ClusterOrder> |
OPTICSCut.makeOPTICSCut(E co,
double epsilon)
Compute an OPTICS cut clustering
|
Modifier and Type | Method and Description |
---|---|
private double |
ClusterHullVisualization.Instance.addRecursively(ArrayList<Vector> hull,
Hierarchy<Cluster<Model>> hier,
Cluster<Model> clus)
Recursively add a cluster and its children.
|
private double |
ClusterHullVisualization.Instance.addRecursively(ArrayList<Vector> hull,
Hierarchy<Cluster<Model>> hier,
Cluster<Model> clus)
Recursively add a cluster and its children.
|
private DoubleObjPair<Polygon> |
ClusterHullVisualization.Instance.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls)
Recursively step through the clusters to build the hulls.
|
private DoubleObjPair<Polygon> |
ClusterHullVisualization.Instance.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls)
Recursively step through the clusters to build the hulls.
|
Modifier and Type | Method and Description |
---|---|
protected static <M extends Model> |
KeyVisualization.findDepth(Clustering<M> c)
Compute the size of the clustering.
|
private static <M extends Model> |
KeyVisualization.findDepth(Hierarchy<Cluster<M>> hier,
Cluster<M> cluster,
int[] size)
Recursive depth computation.
|
Modifier and Type | Method and Description |
---|---|
private double |
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
MarkerLibrary ml,
DoubleDoublePair size,
DoubleDoublePair pos,
int depth,
Cluster<Model> cluster,
TObjectIntMap<Cluster<Model>> cnum,
Hierarchy<Cluster<Model>> hier) |
private double |
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
MarkerLibrary ml,
DoubleDoublePair size,
DoubleDoublePair pos,
int depth,
Cluster<Model> cluster,
TObjectIntMap<Cluster<Model>> cnum,
Hierarchy<Cluster<Model>> hier) |
private double |
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
MarkerLibrary ml,
DoubleDoublePair size,
DoubleDoublePair pos,
int depth,
Cluster<Model> cluster,
TObjectIntMap<Cluster<Model>> cnum,
Hierarchy<Cluster<Model>> hier) |
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.