Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation |
Affinity Propagation (AP) clustering.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering |
Biclustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical | |
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality |
Quality measures for k-Means results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.onedimensional |
Clustering algorithms for one-dimensional data.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in evaluation.
|
de.lmu.ifi.dbs.elki.evaluation.clustering |
Evaluation of clustering results.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.pairsegments |
Pair-segment analysis of multiple clusterings.
|
de.lmu.ifi.dbs.elki.evaluation.outlier |
Evaluate an outlier score using a misclassification based cost model.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.result.textwriter |
Text serialization (CSV, Gnuplot, Console, ...)
|
de.lmu.ifi.dbs.elki.result.textwriter.naming |
Naming schemes for clusters (for output when an algorithm doesn't generate cluster names).
|
de.lmu.ifi.dbs.elki.visualization |
Visualization package of ELKI.
|
de.lmu.ifi.dbs.elki.visualization.opticsplot |
Code for drawing OPTICS plots
|
de.lmu.ifi.dbs.elki.visualization.style |
Style management for ELKI visualizations.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.optics |
Visualizers that do work on OPTICS plots
|
de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.cluster |
Visualizers for clustering results based on parallel coordinates.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster |
Visualizers for clustering results based on 2D projections.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj |
Visualizers that do not use a particular projection.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractProjectedClustering<R extends Clustering<?>,V extends NumberVector<?>>
|
class |
AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<?>>
Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor.
|
interface |
ClusteringAlgorithm<C extends Clustering<? extends Model>>
Interface for Algorithms that are capable to provide a
Clustering as Result. in general, clustering algorithms are supposed to
implement the Algorithm -Interface. |
Modifier and Type | Method and Description |
---|---|
private Clustering<OPTICSModel> |
OPTICSXi.extractClusters(ClusterOrderResult<N> clusterOrderResult,
Relation<?> relation,
double ixi,
int minpts)
Extract clusters from a cluster order result.
|
Clustering<OPTICSModel> |
OPTICSXi.run(Database database,
Relation<?> relation) |
Clustering<Model> |
SNNClustering.run(Database database,
Relation<O> relation)
Perform SNN clustering
|
Clustering<ClusterModel> |
CanopyPreClustering.run(Database database,
Relation<O> relation)
Run the algorithm
|
Clustering<Model> |
AbstractProjectedDBSCAN.run(Database database,
Relation<V> relation)
Run the algorithm
|
Clustering<MeanModel<V>> |
NaiveMeanShiftClustering.run(Database database,
Relation<V> relation)
Run the mean-shift clustering algorithm.
|
Clustering<EMModel<V>> |
EM.run(Database database,
Relation<V> relation)
Performs the EM clustering algorithm on the given database.
|
Clustering<Model> |
DBSCAN.run(Relation<O> relation)
Performs the DBSCAN algorithm on the given database.
|
Modifier and Type | Method and Description |
---|---|
Clustering<MedoidModel> |
AffinityPropagationClusteringAlgorithm.run(Database db,
Relation<O> relation)
Perform affinity propagation clustering.
|
Modifier and Type | Method and Description |
---|---|
Clustering<BiclusterWithInversionsModel> |
ChengAndChurch.biclustering() |
protected abstract Clustering<M> |
AbstractBiclustering.biclustering()
Run the actual biclustering algorithm.
|
Clustering<M> |
AbstractBiclustering.run(Relation<V> relation)
Prepares the algorithm for running on a specific database.
|
Modifier and Type | Field and Description |
---|---|
protected Class<? extends ClusteringAlgorithm<Clustering<Model>>> |
COPAC.Parameterizer.algC |
private Class<? extends ClusteringAlgorithm<Clustering<Model>>> |
COPAC.partitionAlgorithm
Get the algorithm to run on each partition.
|
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
CASH.doRun(Relation<ParameterizationFunction> relation,
FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is
recursively called until only noise is left.
|
Clustering<Model> |
LMCLUS.run(Database database,
Relation<NumberVector<?>> relation)
The main LMCLUS (Linear manifold clustering algorithm) is processed in this
method.
|
Clustering<Model> |
CASH.run(Database database,
Relation<V> vrel)
Run CASH on the relation.
|
Clustering<Model> |
ORCLUS.run(Database database,
Relation<V> relation)
Performs the ORCLUS algorithm on the given database.
|
Clustering<Model> |
COPAC.run(Relation<V> relation)
Performs the COPAC algorithm on the given database.
|
Clustering<CorrelationModel<V>> |
ERiC.run(Relation<V> relation)
Performs the ERiC algorithm on the given database.
|
private Clustering<Model> |
COPAC.runPartitionAlgorithm(Relation<V> relation,
Map<Integer,DBIDs> partitionMap,
DistanceQuery<V,D> query)
Runs the partition algorithm and creates the result.
|
Modifier and Type | Method and Description |
---|---|
ClusteringAlgorithm<Clustering<Model>> |
COPAC.getPartitionAlgorithm(DistanceQuery<V,D> query)
Returns the partition algorithm.
|
Modifier and Type | Method and Description |
---|---|
private void |
ERiC.buildHierarchy(Clustering<CorrelationModel<V>> clustering,
List<List<Cluster<CorrelationModel<V>>>> clusterMap,
DistanceQuery<V,IntegerDistance> query) |
private List<List<Cluster<CorrelationModel<V>>>> |
ERiC.extractCorrelationClusters(Clustering<Model> copacResult,
Relation<V> database,
int dimensionality)
Extracts the correlation clusters and noise from the copac result and
returns a mapping of correlation dimension to maps of clusters within this
correlation dimension.
|
Constructor and Description |
---|
COPAC(FilteredLocalPCABasedDistanceFunction<V,?,D> partitionDistanceFunction,
Class<? extends ClusteringAlgorithm<Clustering<Model>>> partitionAlgorithm,
Collection<Pair<OptionID,Object>> partitionAlgorithmParameters)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
GeneralizedDBSCAN.Instance.run()
Run the actual GDBSCAN algorithm.
|
Clustering<Model> |
GeneralizedDBSCAN.run(Database database) |
Modifier and Type | Method and Description |
---|---|
private Clustering<DendrogramModel<D>> |
ExtractFlatClusteringFromHierarchy.extractClusters(DBIDs ids,
DBIDDataStore pi,
DataStore<D> lambda)
Extract all clusters from the pi-lambda-representation.
|
private Clustering<DendrogramModel<D>> |
ExtractFlatClusteringFromHierarchy.extractClustersDouble(DBIDs ids,
DBIDDataStore pi,
DoubleDistanceDataStore lambda)
Extract all clusters from the pi-lambda-representation.
|
Clustering<DendrogramModel<D>> |
ExtractFlatClusteringFromHierarchy.run(Database database) |
Modifier and Type | Method and Description |
---|---|
Clustering<KMeansModel<V>> |
KMeansBatchedLloyd.run(Database database,
Relation<V> relation) |
Clustering<MedoidModel> |
KMedoidsPAM.run(Database database,
Relation<V> relation)
Run k-medoids
|
Clustering<M> |
KMeansBisecting.run(Database database,
Relation<V> relation) |
Clustering<M> |
KMeans.run(Database database,
Relation<V> rel)
Run the clustering algorithm.
|
Clustering<KMeansModel<V>> |
KMeansMacQueen.run(Database database,
Relation<V> relation) |
Clustering<MedoidModel> |
KMedoidsEM.run(Database database,
Relation<V> relation)
Run k-medoids
|
Clustering<KMeansModel<V>> |
KMeansHybridLloydMacQueen.run(Database database,
Relation<V> relation) |
Clustering<KMeansModel<V>> |
KMeansLloyd.run(Database database,
Relation<V> relation) |
Clustering<M> |
BestOfMultipleKMeans.run(Database database,
Relation<V> relation) |
Clustering<MeanModel<V>> |
KMediansLloyd.run(Database database,
Relation<V> relation) |
Modifier and Type | Method and Description |
---|---|
<V extends O> |
KMeansQualityMeasure.calculateCost(Clustering<? extends MeanModel<V>> clustering,
PrimitiveDistanceFunction<? super V,? extends D> distanceFunction,
Relation<V> relation)
Calculates and returns the quality measure.
|
<V extends NumberVector<?>> |
WithinClusterVarianceQualityMeasure.calculateCost(Clustering<? extends MeanModel<V>> clustering,
PrimitiveDistanceFunction<? super V,? extends NumberDistance<?,?>> distanceFunction,
Relation<V> relation) |
<V extends NumberVector<?>> |
WithinClusterMeanDistanceQualityMeasure.calculateCost(Clustering<? extends MeanModel<V>> clustering,
PrimitiveDistanceFunction<? super V,? extends NumberDistance<?,?>> distanceFunction,
Relation<V> relation) |
Modifier and Type | Method and Description |
---|---|
Clustering<ClusterModel> |
KNNKernelDensityMinimaClustering.run(Relation<V> relation)
Run the clustering algorithm on a data relation.
|
Modifier and Type | Field and Description |
---|---|
private Clustering<SubspaceModel<V>> |
SUBCLU.result
Holds the result;
|
Modifier and Type | Method and Description |
---|---|
private Clustering<SubspaceModel<V>> |
DiSH.computeClusters(Relation<V> database,
ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder,
DiSHDistanceFunction.Instance<V> distFunc)
Computes the hierarchical clusters according to the cluster order.
|
Clustering<SubspaceModel<V>> |
SUBCLU.getResult()
Returns the result of the algorithm.
|
Clustering<SubspaceModel<V>> |
DOC.run(Database database,
Relation<V> relation)
Performs the DOC or FastDOC (as configured) algorithm on the given
Database.
|
Clustering<SubspaceModel<V>> |
DiSH.run(Database database,
Relation<V> relation)
Performs the DiSH algorithm on the given database.
|
Clustering<SubspaceModel<V>> |
PROCLUS.run(Database database,
Relation<V> relation)
Performs the PROCLUS algorithm on the given database.
|
Clustering<SubspaceModel<V>> |
P3C.run(Database database,
Relation<V> relation)
Performs the P3C algorithm on the given Database.
|
Clustering<SubspaceModel<V>> |
SUBCLU.run(Relation<V> relation)
Performs the SUBCLU algorithm on the given database.
|
Clustering<SubspaceModel<V>> |
CLIQUE.run(Relation<V> relation)
Performs the CLIQUE algorithm on the given database.
|
Modifier and Type | Method and Description |
---|---|
private void |
DiSH.buildHierarchy(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Clustering<SubspaceModel<V>> clustering,
List<Cluster<SubspaceModel<V>>> clusters,
int dimensionality)
Builds the cluster hierarchy.
|
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
ByLabelHierarchicalClustering.run(Database database) |
Clustering<Model> |
ByLabelClustering.run(Database database) |
Clustering<Model> |
ByLabelOrAllInOneClustering.run(Database database) |
Clustering<Model> |
ByLabelHierarchicalClustering.run(Relation<?> relation)
Run the actual clustering algorithm.
|
Clustering<Model> |
TrivialAllNoise.run(Relation<?> relation) |
Clustering<Model> |
ByLabelClustering.run(Relation<?> relation)
Run the actual clustering algorithm.
|
Clustering<Model> |
TrivialAllInOne.run(Relation<?> relation) |
Clustering<Model> |
ByModelClustering.run(Relation<Model> relation)
Run the actual clustering algorithm.
|
Modifier and Type | Method and Description |
---|---|
private boolean |
EvaluateClustering.isReferenceResult(Clustering<?> t) |
void |
ClusterContingencyTable.process(Clustering<?> result1,
Clustering<?> result2)
Process two clustering results.
|
void |
ClusterContingencyTable.process(Clustering<?> result1,
Clustering<?> result2)
Process two clustering results.
|
Modifier and Type | Field and Description |
---|---|
private List<Clustering<?>> |
Segments.clusterings
Clusterings
|
Constructor and Description |
---|
Segments(List<Clustering<?>> clusterings,
HierarchicalResult baseResult)
Initialize segments.
|
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
OutlierThresholdClustering.split(OutlierResult or) |
Modifier and Type | Method and Description |
---|---|
static List<Clustering<? extends Model>> |
ResultUtil.getClusteringResults(Result r)
Collect all clustering results from a Result
|
Modifier and Type | Method and Description |
---|---|
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Clustering<Model> clustering,
Cluster<Model> clus,
List<Relation<?>> ra,
NamingScheme naming) |
Modifier and Type | Field and Description |
---|---|
private Clustering<?> |
SimpleEnumeratingScheme.clustering
Clustering this scheme is applied to.
|
Constructor and Description |
---|
SimpleEnumeratingScheme(Clustering<?> clustering)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
VisualizerContext.generateDefaultClustering()
Generate a default (fallback) clustering.
|
Modifier and Type | Method and Description |
---|---|
static <D extends Distance<D>> |
OPTICSCut.makeOPTICSCut(ClusterOrderResult<D> co,
OPTICSDistanceAdapter<D> adapter,
double epsilon)
Compute an OPTICS cut clustering
|
Modifier and Type | Field and Description |
---|---|
(package private) Clustering<?> |
ClusterStylingPolicy.clustering
Clustering in use.
|
Modifier and Type | Method and Description |
---|---|
Clustering<?> |
ClusterStylingPolicy.getClustering()
Get the clustering used by this styling policy
|
Constructor and Description |
---|
ClusterStylingPolicy(Clustering<?> clustering,
StyleLibrary style)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) Clustering<OPTICSModel> |
OPTICSClusterVisualization.Instance.clus
Our clustering
|
Modifier and Type | Method and Description |
---|---|
protected static Clustering<OPTICSModel> |
OPTICSClusterVisualization.findOPTICSClustering(Result result)
Find the first OPTICS clustering child of a result.
|
Modifier and Type | Method and Description |
---|---|
private void |
OPTICSClusterVisualization.Instance.drawClusters(Clustering<OPTICSModel> clustering,
Hierarchy.Iter<Cluster<OPTICSModel>> clusters,
int depth,
Map<Cluster<?>,String> colormap)
Recursively draw clusters
|
Modifier and Type | Field and Description |
---|---|
private Clustering<MeanModel<? extends NumberVector<?>>> |
ClusterParallelMeanVisualization.Instance.clustering
The result we visualize.
|
private Clustering<Model> |
ClusterOutlineVisualization.Instance.clustering
The result we visualize
|
Modifier and Type | Method and Description |
---|---|
private static Clustering<MeanModel<? extends NumberVector<?>>> |
ClusterParallelMeanVisualization.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model.
|
Modifier and Type | Method and Description |
---|---|
private static Clustering<MeanModel<? extends NumberVector<?>>> |
ClusterParallelMeanVisualization.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model.
|
Modifier and Type | Field and Description |
---|---|
(package private) Clustering<EMModel<NV>> |
EMClusterVisualization.Instance.clustering
The result we work on
|
(package private) Clustering<Model> |
ClusterMeanVisualization.Instance.clustering
Clustering to visualize.
|
(package private) Clustering<Model> |
VoronoiVisualization.Instance.clustering
The result we work on.
|
Modifier and Type | Method and Description |
---|---|
private static <NV extends NumberVector<?>> |
EMClusterVisualization.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model.
|
Modifier and Type | Method and Description |
---|---|
private static <NV extends NumberVector<?>> |
EMClusterVisualization.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model.
|
private static boolean |
ClusterMeanVisualization.testMeanModel(Clustering<?> c)
Test if the given clustering has a mean model.
|
private static boolean |
VoronoiVisualization.testMeanModel(Clustering<?> c)
Test if the given clustering has a mean model.
|
Modifier and Type | Field and Description |
---|---|
private Clustering<Model> |
KeyVisualization.Instance.clustering
Clustering to display
|
Modifier and Type | Method and Description |
---|---|
private static <M extends Model> |
KeyVisualization.findDepth(Clustering<M> c) |
Modifier and Type | Method and Description |
---|---|
Clustering<MeanModel<V>> |
SameSizeKMeansAlgorithm.run(Database database,
Relation<V> relation)
Run k-means with cluster size constraints.
|