Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKMeans<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>>
Abstract base class for k-means implementations.
|
class |
BestOfMultipleKMeans<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>>
Run K-Means multiple times, and keep the best run.
|
class |
KMeansBatchedLloyd<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-means algorithm, using Lloyd-style bulk iterations.
|
class |
KMeansBisecting<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>>
The bisecting k-means algorithm works by starting with an initial
partitioning into two clusters, then repeated splitting of the largest
cluster to get additional clusters.
|
class |
KMeansHybridLloydMacQueen<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-means algorithm, alternating between MacQueen-style
incremental processing and Lloyd-Style batch steps.
|
class |
KMeansLloyd<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-means algorithm, using Lloyd-style bulk iterations.
|
class |
KMeansMacQueen<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-means algorithm, using MacQueen style incremental updates.
|
class |
KMediansLloyd<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-medians clustering algorithm, using Lloyd-style bulk
iterations.
|
Modifier and Type | Field and Description |
---|---|
private KMeans<V,D,M> |
KMeansBisecting.innerkMeans
Variant of kMeans for the bisecting step.
|
private KMeans<V,D,?> |
SampleKMeansInitialization.innerkMeans
Variant of kMeans for the bisecting step.
|
protected KMeans<V,D,?> |
SampleKMeansInitialization.Parameterizer.innerkMeans
Inner k-means algorithm to use.
|
private KMeans<V,D,M> |
BestOfMultipleKMeans.innerkMeans
Variant of kMeans for the bisecting step.
|
protected KMeans<V,D,M> |
KMeansBisecting.Parameterizer.kMeansVariant
Variant of kMeans
|
protected KMeans<V,D,M> |
BestOfMultipleKMeans.Parameterizer.kMeansVariant
Variant of kMeans to use.
|
Constructor and Description |
---|
BestOfMultipleKMeans(int trials,
KMeans<V,D,M> innerkMeans,
KMeansQualityMeasure<? super V,? super D> qualityMeasure)
Constructor.
|
KMeansBisecting(int k,
KMeans<V,D,M> innerkMeans)
Constructor.
|
SampleKMeansInitialization(RandomFactory rnd,
KMeans<V,D,?> innerkMeans,
double rate)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
SameSizeKMeansAlgorithm<V extends NumberVector<?>>
K-means variation that produces equally sized clusters.
|