Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.meta |
Meta outlier detection algorithms: external scores, score rescaling.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.database |
ELKI database layer - loading, storing, indexing and accessing data
|
de.lmu.ifi.dbs.elki.database.ids |
Database object identification and ID group handling API.
|
de.lmu.ifi.dbs.elki.database.ids.generic |
Database object identification and ID group handling - generic implementations.
|
de.lmu.ifi.dbs.elki.database.ids.integer |
Integer-based DBID implementation --
do not use directly - always use
DBIDUtil . |
de.lmu.ifi.dbs.elki.database.query.knn |
Prepared queries for k nearest neighbor (kNN) queries.
|
de.lmu.ifi.dbs.elki.database.query.rknn |
Prepared queries for reverse k nearest neighbor (rkNN) queries.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
Kernel functions.
|
de.lmu.ifi.dbs.elki.evaluation.similaritymatrix |
Render a distance matrix to visualize a clustering-distance-combination.
|
de.lmu.ifi.dbs.elki.index |
Index structure implementations
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.index.preprocessed.snn |
Indexes providing nearest neighbor sets
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query |
Classes for performing queries (knn, range, ...) on metrical trees.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query |
Queries on the R-Tree family of indexes: kNN and range queries.
|
de.lmu.ifi.dbs.elki.math.dimensionsimilarity |
Functions to compute the similarity of dimensions (or the interestingness of the combination).
|
de.lmu.ifi.dbs.elki.utilities |
Utility and helper classes - commonly used data structures, output formatting, exceptions, ...
|
de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike |
Common API for accessing objects that are "array-like", including lists, numerical vectors, database vectors and arrays.
|
de.lmu.ifi.dbs.elki.utilities.scaling.outlier |
Scaling of Outlier scores, that require a statistical analysis of the occurring values
|
Modifier and Type | Method and Description |
---|---|
protected boolean |
KMedoidsPAM.assignToNearestCluster(ArrayDBIDs means,
DBIDs ids,
WritableDoubleDataStore second,
List<? extends ModifiableDBIDs> clusters,
DistanceQuery<V,D> distQ)
Returns a list of clusters.
|
protected boolean |
KMedoidsEM.assignToNearestCluster(ArrayDBIDs means,
Mean[] mdist,
List<? extends ModifiableDBIDs> clusters,
DistanceQuery<V,D> distQ)
Returns a list of clusters.
|
protected double |
KMeansPlusPlusInitialMeans.initialWeights(double[] weights,
ArrayDBIDs ids,
DBID latest,
DistanceQuery<? super V,D> distQ)
Initialize the weight list.
|
protected double |
KMeansPlusPlusInitialMeans.updateWeights(double[] weights,
ArrayDBIDs ids,
DBID latest,
DistanceQuery<? super V,D> distQ)
Update the weight list.
|
protected double |
KMeansPlusPlusInitialMeans.updateWeights(double[] weights,
ArrayDBIDs ids,
DBID latest,
PrimitiveDoubleDistanceFunction<V> distF,
Relation<V> rel)
Update the weight list.
|
Modifier and Type | Method and Description |
---|---|
private ArrayList<ArrayDBIDs> |
HiCS.buildOneDimIndexes(Relation<? extends NumberVector<?>> relation)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list
|
Modifier and Type | Method and Description |
---|---|
private void |
HiCS.calculateContrast(Relation<? extends NumberVector<?>> relation,
HiCS.HiCSSubspace subspace,
ArrayList<ArrayDBIDs> subspaceIndex,
Random random)
Calculates the actual contrast of a given subspace.
|
private Set<HiCS.HiCSSubspace> |
HiCS.calculateSubspaces(Relation<? extends NumberVector<?>> relation,
ArrayList<ArrayDBIDs> subspaceIndex,
Random random)
Identifies high contrast subspaces in a given full-dimensional database.
|
Modifier and Type | Field and Description |
---|---|
private ArrayDBIDs |
Bicluster.rowIDs
The ids of the rows included in the bicluster.
|
Constructor and Description |
---|
Bicluster(ArrayDBIDs rowIDs,
int[] colIDs,
Relation<V> database)
Defines a new bicluster for given parameters.
|
BiclusterWithInverted(ArrayDBIDs rowIDs,
int[] colIDs,
Relation<V> database) |
Modifier and Type | Field and Description |
---|---|
private ArrayDBIDs |
StaticArrayDatabase.ids
IDs of this database
|
Modifier and Type | Interface and Description |
---|---|
interface |
ArrayModifiableDBIDs
Array-oriented implementation of a modifiable DBID collection.
|
interface |
ArrayStaticDBIDs
Unmodifiable, indexed DBIDs.
|
interface |
DBID
Database ID object.
|
interface |
DBIDRange
Static DBID range.
|
interface |
DBIDVar
(Persistent) variable storing a DBID reference.
|
Modifier and Type | Class and Description |
---|---|
class |
EmptyDBIDs
Empty DBID collection.
|
Modifier and Type | Method and Description |
---|---|
static ArrayDBIDs |
DBIDUtil.ensureArray(DBIDs ids)
Ensure that the given DBIDs are array-indexable.
|
Modifier and Type | Class and Description |
---|---|
class |
UnmodifiableArrayDBIDs
Unmodifiable wrapper for DBIDs.
|
Modifier and Type | Field and Description |
---|---|
protected ArrayDBIDs |
MaskedDBIDs.data
Data storage.
|
private ArrayDBIDs |
UnmodifiableArrayDBIDs.inner
The DBIDs we wrap.
|
Constructor and Description |
---|
MaskedDBIDs(ArrayDBIDs data,
BitSet bits,
boolean inverse)
Constructor.
|
UnmodifiableArrayDBIDs(ArrayDBIDs inner)
Constructor.
|
Modifier and Type | Interface and Description |
---|---|
interface |
IntegerArrayStaticDBIDs
Combination of
ArrayStaticDBIDs and IntegerDBIDs . |
Modifier and Type | Class and Description |
---|---|
class |
IntArrayStaticDBIDs
Static (no modifications allowed) set of Database Object IDs.
|
(package private) class |
IntegerDBID
Database ID object.
|
(package private) class |
IntegerDBIDRange
Representing a DBID range allocation.
|
(package private) class |
IntegerDBIDVar
Variable for storing a single DBID reference.
|
class |
TroveArrayDBIDs
Abstract base class for GNU Trove array based lists.
|
(package private) class |
TroveArrayModifiableDBIDs
Class using a GNU Trove int array list as storage.
|
(package private) class |
TroveArrayStaticDBIDs
Class accessing a trove int array.
|
class |
UnmodifiableIntegerArrayDBIDs
Unmodifiable wrapper for DBIDs.
|
Modifier and Type | Method and Description |
---|---|
List<? extends KNNResult<D>> |
KNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
Bulk query method
|
List<KNNResult<D>> |
PreprocessorKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<KNNResult<D>> |
LinearScanKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<KNNResult<D>> |
LinearScanPrimitiveDistanceKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
private void |
LinearScanKNNQuery.linearScanBatchKNN(ArrayDBIDs ids,
List<KNNHeap<D>> heaps)
Linear batch knn for arbitrary distance functions.
|
Modifier and Type | Method and Description |
---|---|
List<GenericDistanceDBIDList<D>> |
LinearScanRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<? extends DistanceDBIDResult<D>> |
RKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
Bulk query method for reverse k nearest neighbors for ids.
|
List<? extends DistanceDBIDResult<D>> |
PreprocessorRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
Constructor and Description |
---|
KernelMatrix(PrimitiveSimilarityFunction<? super O,DoubleDistance> kernelFunction,
Relation<? extends O> database,
ArrayDBIDs ids)
Provides a new kernel matrix.
|
Modifier and Type | Field and Description |
---|---|
(package private) ArrayDBIDs |
ComputeSimilarityMatrixImage.SimilarityMatrix.ids
The database IDs used
|
Modifier and Type | Method and Description |
---|---|
ArrayDBIDs |
ComputeSimilarityMatrixImage.SimilarityMatrix.getIDs()
Get the IDs
|
Constructor and Description |
---|
ComputeSimilarityMatrixImage.SimilarityMatrix(RenderedImage img,
Relation<?> relation,
ArrayDBIDs ids)
Constructor
|
Modifier and Type | Method and Description |
---|---|
List<KNNResult<D>> |
AbstractRefiningIndex.AbstractKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
Modifier and Type | Method and Description |
---|---|
protected ArrayDBIDs |
MaterializeKNNAndRKNNPreprocessor.affectedkNN(List<? extends KNNResult<D>> extraxt,
DBIDs remove)
Extracts and removes the DBIDs in the given collections.
|
protected ArrayDBIDs |
MaterializeKNNAndRKNNPreprocessor.affectedRkNN(List<? extends Collection<DistanceDBIDPair<D>>> extraxt,
DBIDs remove)
Extracts and removes the DBIDs in the given collections.
|
private ArrayDBIDs |
MaterializeKNNPreprocessor.updateKNNsAfterDeletion(DBIDs ids)
Updates the kNNs of the RkNNs of the specified ids.
|
private ArrayDBIDs |
MaterializeKNNPreprocessor.updateKNNsAfterInsertion(DBIDs ids)
Updates the kNNs of the RkNNs of the specified ids.
|
private ArrayDBIDs |
MaterializeKNNAndRKNNPreprocessor.updateKNNsAndRkNNs(DBIDs ids)
Updates the kNNs and RkNNs after insertion of the specified ids.
|
Modifier and Type | Method and Description |
---|---|
private void |
MaterializeKNNAndRKNNPreprocessor.materializeKNNAndRKNNs(ArrayDBIDs ids,
FiniteProgress progress)
Materializes the kNNs and RkNNs of the specified object IDs.
|
Modifier and Type | Method and Description |
---|---|
ArrayDBIDs |
SharedNearestNeighborIndex.getNearestNeighborSet(DBIDRef id)
Get the precomputed nearest neighbors
|
ArrayDBIDs |
SharedNearestNeighborPreprocessor.getNearestNeighborSet(DBIDRef objid) |
Modifier and Type | Method and Description |
---|---|
List<KNNResult<D>> |
MetricalIndexKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<KNNResult<DoubleDistance>> |
DoubleDistanceMetricalIndexKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<? extends DistanceDBIDResult<D>> |
MkTreeRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
Modifier and Type | Method and Description |
---|---|
List<DoubleDistanceKNNList> |
DoubleDistanceRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<KNNResult<D>> |
GenericRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
Modifier and Type | Method and Description |
---|---|
private ArrayList<ArrayDBIDs> |
HiCSDimensionSimilarity.buildOneDimIndexes(Relation<? extends NumberVector<?>> relation,
DBIDs ids,
DimensionSimilarityMatrix matrix)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list
|
Modifier and Type | Method and Description |
---|---|
private double |
HiCSDimensionSimilarity.calculateContrast(Relation<? extends NumberVector<?>> relation,
DBIDs subset,
ArrayDBIDs subspaceIndex1,
ArrayDBIDs subspaceIndex2,
int dim1,
int dim2,
Random random)
Calculates the actual contrast of a given subspace
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector<?>> |
DatabaseUtil.quickMedian(Relation<V> relation,
ArrayDBIDs ids,
int dimension,
int numberOfSamples)
Returns the median of a data set in the given dimension by using a sampling
method.
|
Modifier and Type | Method and Description |
---|---|
DBID |
ArrayDBIDsAdapter.get(ArrayDBIDs array,
int off) |
int |
ArrayDBIDsAdapter.size(ArrayDBIDs array) |
Modifier and Type | Method and Description |
---|---|
private double[] |
SigmoidOutlierScalingFunction.MStepLevenbergMarquardt(double a,
double b,
ArrayDBIDs ids,
BitSet t,
Relation<Double> scores)
M-Step using a modified Levenberg-Marquardt method.
|