Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
Modifier and Type | Field and Description |
---|---|
private KMeansInitialization<V> |
EM.initializer
Class to choose the initial means
|
protected KMeansInitialization<V> |
EM.Parameterizer.initializer |
Constructor and Description |
---|
EM(int k,
double delta,
KMeansInitialization<V> initializer,
int maxiter)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKMeansInitialization<V>
Abstract base class for common k-means initializations.
|
class |
FirstKInitialMeans<V>
Initialize K-means by using the first k objects as initial means.
|
class |
KMeansPlusPlusInitialMeans<V,D extends NumberDistance<D,?>>
K-Means++ initialization for k-means.
|
class |
PAMInitialMeans<V,D extends NumberDistance<D,?>>
PAM initialization for k-means (and of course, PAM).
|
class |
RandomlyChosenInitialMeans<V>
Initialize K-means by randomly choosing k exsiting elements as cluster
centers.
|
class |
RandomlyGeneratedInitialMeans<V extends NumberVector<?>>
Initialize k-means by generating random vectors (within the data sets value
range).
|
Modifier and Type | Field and Description |
---|---|
protected KMeansInitialization<V> |
KMeansLloyd.Parameterizer.initializer
Initialization method.
|
protected KMeansInitialization<V> |
AbstractKMeans.initializer
Method to choose initial means.
|
protected KMeansInitialization<V> |
KMeansMacQueen.Parameterizer.initializer
Initialization method.
|
protected KMeansInitialization<V> |
KMediansLloyd.Parameterizer.initializer
Initialization method.
|
Constructor and Description |
---|
AbstractKMeans(PrimitiveDistanceFunction<? super NumberVector<?>,D> distanceFunction,
int k,
int maxiter,
KMeansInitialization<V> initializer)
Constructor.
|
KMeansLloyd(PrimitiveDistanceFunction<NumberVector<?>,D> distanceFunction,
int k,
int maxiter,
KMeansInitialization<V> initializer)
Constructor.
|
KMeansMacQueen(PrimitiveDistanceFunction<NumberVector<?>,D> distanceFunction,
int k,
int maxiter,
KMeansInitialization<V> initializer)
Constructor.
|
KMediansLloyd(PrimitiveDistanceFunction<NumberVector<?>,D> distanceFunction,
int k,
int maxiter,
KMeansInitialization<V> initializer)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected KMeansInitialization<V> |
SameSizeKMeansAlgorithm.Parameterizer.initializer
Initialization method.
|
Constructor and Description |
---|
SameSizeKMeansAlgorithm(PrimitiveDoubleDistanceFunction<? super NumberVector<?>> distanceFunction,
int k,
int maxiter,
KMeansInitialization<V> initializer)
Constructor.
|