Uses of Interface
de.lmu.ifi.dbs.elki.database.ids.ArrayDBIDs

Packages that use ArrayDBIDs
de.lmu.ifi.dbs.elki.data.model Cluster models classes for various algorithms. 
de.lmu.ifi.dbs.elki.database ELKI database layer - loading, storing, indexing and accessing data 
de.lmu.ifi.dbs.elki.database.ids Database object identification and ID group handling API
de.lmu.ifi.dbs.elki.database.ids.generic Database object identification and ID group handling - generic implementations
de.lmu.ifi.dbs.elki.database.ids.integer Integer-based DBID implementation -- do not use directly - always use DBIDUtil
de.lmu.ifi.dbs.elki.database.query.knn Prepared queries for k nearest neighbor (kNN) queries. 
de.lmu.ifi.dbs.elki.database.query.range Prepared queries for ε-range queries. 
de.lmu.ifi.dbs.elki.database.query.rknn Prepared queries for reverse k nearest neighbor (rkNN) queries. 
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel Kernel functions. 
de.lmu.ifi.dbs.elki.evaluation.similaritymatrix Render a distance matrix to visualize a clustering-distance-combination. 
de.lmu.ifi.dbs.elki.index.preprocessed.knn Indexes providing KNN and rKNN data. 
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query Classes for performing queries (knn, range, ...) on metrical trees. 
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query Queries on the R-Tree family of indexes: kNN and range queries. 
de.lmu.ifi.dbs.elki.utilities Utility and helper classes - commonly used data structures, output formatting, exceptions, ... 
de.lmu.ifi.dbs.elki.utilities.datastructures.heap Heap structures and variations such as bounded priority heaps. 
de.lmu.ifi.dbs.elki.utilities.scaling.outlier Scaling of Outlier scores, that require a statistical analysis of the occurring values 
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.data.model
 

Fields in de.lmu.ifi.dbs.elki.data.model declared as ArrayDBIDs
private  ArrayDBIDs Bicluster.rowIDs
          The ids of the rows included in the bicluster.
 

Constructors in de.lmu.ifi.dbs.elki.data.model with parameters of type ArrayDBIDs
Bicluster(ArrayDBIDs rowIDs, int[] colIDs, Relation<V> database)
          Defines a new bicluster for given parameters.
BiclusterWithInverted(ArrayDBIDs rowIDs, int[] colIDs, Relation<V> database)
           
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.database
 

Fields in de.lmu.ifi.dbs.elki.database declared as ArrayDBIDs
private  ArrayDBIDs StaticArrayDatabase.ids
          IDs of this database
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.database.ids
 

Subinterfaces of ArrayDBIDs in de.lmu.ifi.dbs.elki.database.ids
 interface ArrayModifiableDBIDs
          Array-oriented implementation of a modifiable DBID collection.
 interface ArrayStaticDBIDs
          Unmodifiable, indexed DBIDs.
 interface DBID
          Database ID object.
 interface DBIDRange
          Static DBID range.
 

Classes in de.lmu.ifi.dbs.elki.database.ids that implement ArrayDBIDs
(package private)  class EmptyDBIDs
          Empty DBID collection.
 

Methods in de.lmu.ifi.dbs.elki.database.ids that return ArrayDBIDs
static ArrayDBIDs DBIDUtil.ensureArray(DBIDs ids)
          Ensure that the given DBIDs are array-indexable.
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.database.ids.generic
 

Classes in de.lmu.ifi.dbs.elki.database.ids.generic that implement ArrayDBIDs
 class GenericArrayModifiableDBIDs
          Array-oriented implementation of a modifiable DBID collection.
 

Fields in de.lmu.ifi.dbs.elki.database.ids.generic declared as ArrayDBIDs
protected  ArrayDBIDs MaskedDBIDs.data
          Data storage
 

Constructors in de.lmu.ifi.dbs.elki.database.ids.generic with parameters of type ArrayDBIDs
MaskedDBIDs(ArrayDBIDs data, BitSet bits, boolean inverse)
          Constructor.
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.database.ids.integer
 

Classes in de.lmu.ifi.dbs.elki.database.ids.integer that implement ArrayDBIDs
 class IntegerArrayStaticDBIDs
          Static (no modifications allowed) set of Database Object IDs.
(package private)  class IntegerDBID
          Database ID object.
(package private)  class IntegerDBIDRange
          Representing a DBID range allocation
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.database.query.knn
 

Methods in de.lmu.ifi.dbs.elki.database.query.knn with parameters of type ArrayDBIDs
 List<List<DistanceResultPair<D>>> KNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids, int k)
          Bulk query method
 List<List<DistanceResultPair<D>>> PreprocessorKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 List<List<DistanceResultPair<D>>> LinearScanKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 List<List<DistanceResultPair<D>>> LinearScanPrimitiveDistanceKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
private  void LinearScanKNNQuery.linearScanBatchKNN(ArrayDBIDs ids, List<KNNHeap<D>> heaps)
          Linear batch knn for arbitrary distance functions.
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.database.query.range
 

Methods in de.lmu.ifi.dbs.elki.database.query.range with parameters of type ArrayDBIDs
 List<List<DistanceResultPair<D>>> RangeQuery.getRangeForBulkDBIDs(ArrayDBIDs ids, D range)
          Bulk query method
 List<List<DistanceResultPair<D>>> AbstractDistanceRangeQuery.getRangeForBulkDBIDs(ArrayDBIDs ids, D range)
           
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.database.query.rknn
 

Methods in de.lmu.ifi.dbs.elki.database.query.rknn with parameters of type ArrayDBIDs
 List<List<DistanceResultPair<D>>> LinearScanRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 List<List<DistanceResultPair<D>>> RKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids, int k)
          Bulk query method for reverse k nearest neighbors for ids.
 List<List<DistanceResultPair<D>>> PreprocessorRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel
 

Constructors in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel with parameters of type ArrayDBIDs
KernelMatrix(PrimitiveSimilarityFunction<? super O,DoubleDistance> kernelFunction, Relation<? extends O> database, ArrayDBIDs ids)
          Provides a new kernel matrix.
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix
 

Fields in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix declared as ArrayDBIDs
(package private)  ArrayDBIDs ComputeSimilarityMatrixImage.SimilarityMatrix.ids
          The database IDs used
 

Methods in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix that return ArrayDBIDs
 ArrayDBIDs ComputeSimilarityMatrixImage.SimilarityMatrix.getIDs()
          Get the IDs
 

Constructors in de.lmu.ifi.dbs.elki.evaluation.similaritymatrix with parameters of type ArrayDBIDs
ComputeSimilarityMatrixImage.SimilarityMatrix(RenderedImage img, Relation<?> relation, ArrayDBIDs ids)
          Constructor
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.index.preprocessed.knn
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed.knn that return ArrayDBIDs
protected  ArrayDBIDs MaterializeKNNPreprocessor.extractAndRemoveIDs(List<List<DistanceResultPair<D>>> extraxt, ArrayDBIDs remove)
          Extracts and removes the DBIDs in the given collections.
private  ArrayDBIDs MaterializeKNNPreprocessor.updateKNNsAfterDeletion(DBIDs ids)
          Updates the kNNs of the RkNNs of the specified ids.
private  ArrayDBIDs MaterializeKNNPreprocessor.updateKNNsAfterInsertion(DBIDs ids)
          Updates the kNNs of the RkNNs of the specified ids.
private  ArrayDBIDs MaterializeKNNAndRKNNPreprocessor.updateKNNsAndRkNNs(DBIDs ids)
          Updates the kNNs and RkNNs after insertion of the specified ids.
 

Methods in de.lmu.ifi.dbs.elki.index.preprocessed.knn with parameters of type ArrayDBIDs
protected  ArrayDBIDs MaterializeKNNPreprocessor.extractAndRemoveIDs(List<List<DistanceResultPair<D>>> extraxt, ArrayDBIDs remove)
          Extracts and removes the DBIDs in the given collections.
private  void MaterializeKNNAndRKNNPreprocessor.materializeKNNAndRKNNs(ArrayDBIDs ids, FiniteProgress progress)
          Materializes the kNNs and RkNNs of the specified object IDs.
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query
 

Methods in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query with parameters of type ArrayDBIDs
 List<List<DistanceResultPair<D>>> MetricalIndexKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 List<List<DistanceResultPair<D>>> MkTreeRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query
 

Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query with parameters of type ArrayDBIDs
 List<List<DistanceResultPair<DoubleDistance>>> DoubleDistanceRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 List<List<DistanceResultPair<D>>> GenericRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids, int k)
           
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.utilities
 

Methods in de.lmu.ifi.dbs.elki.utilities with parameters of type ArrayDBIDs
static
<V extends NumberVector<?,?>>
double
DatabaseUtil.quickMedian(Relation<V> relation, ArrayDBIDs ids, int dimension, int numberOfSamples)
          Returns the median of a data set in the given dimension by using a sampling method.
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.utilities.datastructures.heap
 

Classes in de.lmu.ifi.dbs.elki.utilities.datastructures.heap that implement ArrayDBIDs
protected static class KNNList.DBIDView
          A view on the DBIDs of the result
 

Methods in de.lmu.ifi.dbs.elki.utilities.datastructures.heap that return ArrayDBIDs
 ArrayDBIDs KNNList.asDBIDs()
          View as ArrayDBIDs
static ArrayDBIDs KNNList.asDBIDs(List<? extends DistanceResultPair<?>> list)
          View as ArrayDBIDs
 

Uses of ArrayDBIDs in de.lmu.ifi.dbs.elki.utilities.scaling.outlier
 

Methods in de.lmu.ifi.dbs.elki.utilities.scaling.outlier with parameters of type ArrayDBIDs
private  double[] SigmoidOutlierScalingFunction.MStepLevenbergMarquardt(double a, double b, ArrayDBIDs ids, BitSet t, Relation<Double> scores)
          M-Step using a modified Levenberg-Marquardt method.
 


Release 0.4.0 (2011-09-20_1324)