|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Cluster | |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms
Clustering algorithms are supposed to implement the Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms |
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | Axis-parallel subspace clustering algorithms The clustering algorithms in this package are instances of both, projected clustering algorithms or subspace clustering algorithms according to the classical but somewhat obsolete classification schema of clustering algorithms for axis-parallel subspaces. |
de.lmu.ifi.dbs.elki.data | Basic classes for different data types, database object types and label types. |
de.lmu.ifi.dbs.elki.evaluation.paircounting.generator | Pair generation for pair counting evaluation. |
de.lmu.ifi.dbs.elki.evaluation.roc | Evaluation of rankings using ROC AUC (Receiver Operation Characteristics - Area Under Curve) |
de.lmu.ifi.dbs.elki.result.textwriter | Text serialization (CSV, Gnuplot, Console, ...) |
de.lmu.ifi.dbs.elki.result.textwriter.naming | Naming schemes for clusters (for output when an algorithm doesn't generate cluster names). |
de.lmu.ifi.dbs.elki.visualization.visualizers.optics | Visualizers that do work on OPTICS plots |
Uses of Cluster in de.lmu.ifi.dbs.elki.algorithm.clustering |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering that return Cluster | |
---|---|
private Cluster<DendrogramModel<D>> |
SLINK.createParent(String name,
Cluster<DendrogramModel<D>> leftChild,
Cluster<DendrogramModel<D>> rightChild,
D distance,
ModifiableHierarchy<Cluster<DendrogramModel<D>>> hier)
|
private Cluster<DendrogramModel<D>> |
SLINK.lastAncestor(Cluster<DendrogramModel<D>> cluster,
ModifiableHierarchy<Cluster<DendrogramModel<D>>> hier)
Determines recursively the last ancestor of the specified cluster. |
private Cluster<DendrogramModel<D>> |
SLINK.root(Map<DBID,ModifiableDBIDs> cluster_ids,
Map<DBID,D> cluster_distances,
DataStore<DBID> pi,
DataStore<D> lambda,
ModifiableHierarchy<Cluster<DendrogramModel<D>>> hier,
FiniteProgress progress)
|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering with parameters of type Cluster | |
---|---|
private Cluster<DendrogramModel<D>> |
SLINK.createParent(String name,
Cluster<DendrogramModel<D>> leftChild,
Cluster<DendrogramModel<D>> rightChild,
D distance,
ModifiableHierarchy<Cluster<DendrogramModel<D>>> hier)
|
private Cluster<DendrogramModel<D>> |
SLINK.createParent(String name,
Cluster<DendrogramModel<D>> leftChild,
Cluster<DendrogramModel<D>> rightChild,
D distance,
ModifiableHierarchy<Cluster<DendrogramModel<D>>> hier)
|
private Cluster<DendrogramModel<D>> |
SLINK.lastAncestor(Cluster<DendrogramModel<D>> cluster,
ModifiableHierarchy<Cluster<DendrogramModel<D>>> hier)
Determines recursively the last ancestor of the specified cluster. |
Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering with type arguments of type Cluster | |
---|---|
private Cluster<DendrogramModel<D>> |
SLINK.createParent(String name,
Cluster<DendrogramModel<D>> leftChild,
Cluster<DendrogramModel<D>> rightChild,
D distance,
ModifiableHierarchy<Cluster<DendrogramModel<D>>> hier)
|
private Cluster<DendrogramModel<D>> |
SLINK.lastAncestor(Cluster<DendrogramModel<D>> cluster,
ModifiableHierarchy<Cluster<DendrogramModel<D>>> hier)
Determines recursively the last ancestor of the specified cluster. |
private Cluster<DendrogramModel<D>> |
SLINK.root(Map<DBID,ModifiableDBIDs> cluster_ids,
Map<DBID,D> cluster_distances,
DataStore<DBID> pi,
DataStore<D> lambda,
ModifiableHierarchy<Cluster<DendrogramModel<D>>> hier,
FiniteProgress progress)
|
Uses of Cluster in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation that return types with arguments of type Cluster | |
---|---|
private SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> |
ERiC.extractCorrelationClusters(Clustering<Model> copacResult,
Relation<V> database,
int dimensionality)
Extracts the correlation clusters and noise from the copac result and returns a mapping of correlation dimension to maps of clusters within this correlation dimension. |
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with parameters of type Cluster | |
---|---|
private boolean |
ERiC.isParent(ERiCDistanceFunction distanceFunction,
Cluster<CorrelationModel<V>> parent,
List<Cluster<CorrelationModel<V>>> children)
Returns true, if the specified parent cluster is a parent of one child of the children clusters. |
Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with type arguments of type Cluster | |
---|---|
private void |
ERiC.buildHierarchy(SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> clusterMap,
DistanceQuery<V,IntegerDistance> query)
|
private boolean |
ERiC.isParent(ERiCDistanceFunction distanceFunction,
Cluster<CorrelationModel<V>> parent,
List<Cluster<CorrelationModel<V>>> children)
Returns true, if the specified parent cluster is a parent of one child of the children clusters. |
Uses of Cluster in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace that return types with arguments of type Cluster | |
---|---|
private List<Cluster<Model>> |
SUBCLU.runDBSCAN(Relation<V> relation,
DBIDs ids,
Subspace<V> subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the given subspace. |
private List<Cluster<SubspaceModel<V>>> |
DiSH.sortClusters(Relation<V> database,
Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap)
Returns a sorted list of the clusters w.r.t. the subspace dimensionality in descending order. |
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with parameters of type Cluster | |
---|---|
private boolean |
DiSH.isParent(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Cluster<SubspaceModel<V>> parent,
List<Cluster<SubspaceModel<V>>> children)
Returns true, if the specified parent cluster is a parent of one child of the children clusters. |
Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering.subspace with type arguments of type Cluster | |
---|---|
private Subspace<V> |
SUBCLU.bestSubspace(List<Subspace<V>> subspaces,
Subspace<V> candidate,
TreeMap<Subspace<V>,List<Cluster<Model>>> clusterMap)
Determines the d -dimensional subspace of the (d+1)
-dimensional candidate with minimal number of objects in the cluster. |
private void |
DiSH.buildHierarchy(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
List<Cluster<SubspaceModel<V>>> clusters,
int dimensionality)
Builds the cluster hierarchy. |
private boolean |
DiSH.isParent(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Cluster<SubspaceModel<V>> parent,
List<Cluster<SubspaceModel<V>>> children)
Returns true, if the specified parent cluster is a parent of one child of the children clusters. |
Uses of Cluster in de.lmu.ifi.dbs.elki.data |
---|
Fields in de.lmu.ifi.dbs.elki.data with type parameters of type Cluster | |
---|---|
private Hierarchy<Cluster<M>> |
Cluster.hierarchy
Object that the hierarchy management is delegated to. |
private List<Cluster<M>> |
Clustering.toplevelclusters
Keep a list of top level clusters. |
Methods in de.lmu.ifi.dbs.elki.data that return types with arguments of type Cluster | |
---|---|
List<Cluster<M>> |
Clustering.getAllClusters()
Collect all clusters (recursively) into a List. |
List<Cluster<M>> |
Cluster.getChildren()
Delegate to hierarchy object |
Set<Cluster<M>> |
Cluster.getDescendants()
Collect descendants |
Hierarchy<Cluster<M>> |
Cluster.getHierarchy()
Get hierarchy object |
List<Cluster<M>> |
Cluster.getParents()
Delegate to hierarchy object |
List<Cluster<M>> |
Clustering.getToplevelClusters()
Return top level clusters |
IterableIterator<Cluster<M>> |
Cluster.iterAncestors()
Delegate to hierarchy object |
IterableIterator<Cluster<M>> |
Cluster.iterDescendants()
Delegate to hierarchy object |
Methods in de.lmu.ifi.dbs.elki.data with parameters of type Cluster | |
---|---|
void |
Clustering.addCluster(Cluster<M> n)
Add a cluster to the clustering. |
int |
Cluster.PartialComparator.compare(Cluster<?> o1,
Cluster<?> o2)
|
int |
Cluster.PartialComparator.compare(Cluster<?> o1,
Cluster<?> o2)
|
Method parameters in de.lmu.ifi.dbs.elki.data with type arguments of type Cluster | |
---|---|
void |
Cluster.setHierarchy(Hierarchy<Cluster<M>> hierarchy)
Set hierarchy object |
Constructor parameters in de.lmu.ifi.dbs.elki.data with type arguments of type Cluster | |
---|---|
Cluster(String name,
DBIDs ids,
boolean noise,
M model,
Hierarchy<Cluster<M>> hierarchy)
Full constructor |
|
Cluster(String name,
DBIDs ids,
boolean noise,
M model,
List<Cluster<M>> children,
List<Cluster<M>> parents)
Constructor with hierarchy information. |
|
Cluster(String name,
DBIDs ids,
boolean noise,
M model,
List<Cluster<M>> children,
List<Cluster<M>> parents)
Constructor with hierarchy information. |
|
Cluster(String name,
DBIDs ids,
M model,
Hierarchy<Cluster<M>> hierarchy)
Constructor with hierarchy but noise flag defaulting to false. |
|
Cluster(String name,
DBIDs ids,
M model,
List<Cluster<M>> children,
List<Cluster<M>> parents)
Constructor with hierarchy information, but no noise flag. |
|
Cluster(String name,
DBIDs ids,
M model,
List<Cluster<M>> children,
List<Cluster<M>> parents)
Constructor with hierarchy information, but no noise flag. |
|
Clustering(String name,
String shortname,
List<Cluster<M>> toplevelclusters)
Constructor with a list of top level clusters |
Uses of Cluster in de.lmu.ifi.dbs.elki.evaluation.paircounting.generator |
---|
Constructors in de.lmu.ifi.dbs.elki.evaluation.paircounting.generator with parameters of type Cluster | |
---|---|
PairGeneratorNoise(Cluster<?> cluster)
Crate new generator for a base cluster object. |
|
PairGeneratorSingleCluster(Cluster<?> cluster,
boolean useHierarchical)
Generate pairs for a hierarchical cluster. |
Uses of Cluster in de.lmu.ifi.dbs.elki.evaluation.roc |
---|
Methods in de.lmu.ifi.dbs.elki.evaluation.roc with parameters of type Cluster | ||
---|---|---|
static
|
ROC.computeROCAUCDistanceResult(int size,
Cluster<?> clus,
List<DistanceResultPair<D>> nei)
Compute a ROC curves Area-under-curve for a QueryResult and a Cluster. |
Uses of Cluster in de.lmu.ifi.dbs.elki.result.textwriter |
---|
Methods in de.lmu.ifi.dbs.elki.result.textwriter with parameters of type Cluster | |
---|---|
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Cluster<?> clus,
List<Relation<?>> ra,
NamingScheme naming,
List<SettingsResult> sr)
|
Uses of Cluster in de.lmu.ifi.dbs.elki.result.textwriter.naming |
---|
Fields in de.lmu.ifi.dbs.elki.result.textwriter.naming with type parameters of type Cluster | |
---|---|
private Map<Cluster<?>,String> |
SimpleEnumeratingScheme.names
Assigned cluster names. |
Methods in de.lmu.ifi.dbs.elki.result.textwriter.naming with parameters of type Cluster | |
---|---|
String |
SimpleEnumeratingScheme.getNameFor(Cluster<?> cluster)
Retrieve the cluster name. |
String |
NamingScheme.getNameFor(Cluster<?> cluster)
Retrieve a name for the given cluster. |
Uses of Cluster in de.lmu.ifi.dbs.elki.visualization.visualizers.optics |
---|
Method parameters in de.lmu.ifi.dbs.elki.visualization.visualizers.optics with type arguments of type Cluster | |
---|---|
private void |
OPTICSClusterVisualization.drawClusters(List<Cluster<OPTICSModel>> clusters,
int depth)
Recursively draw clusters |
|
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |