Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical |
Hierarchical agglomerative clustering (HAC).
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization |
Initialization strategies for k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.optics |
OPTICS family of clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected
clustering algorithms or subspace clustering algorithms according to the
classical but somewhat obsolete classification schema of clustering
algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.distance |
Distance-based outlier detection algorithms, such as DBOutlier and kNN.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.projection |
Data projections (see also preprocessing filters for basic projections).
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms.
|
de.lmu.ifi.dbs.elki.database |
ELKI database layer - loading, storing, indexing and accessing data
|
de.lmu.ifi.dbs.elki.database.query |
Database queries - computing distances, neighbors, similarities - API
and general documentation
Introduction
The database query API is designed around the concept of prepared
statements.
|
de.lmu.ifi.dbs.elki.database.query.distance |
Prepared queries for distances
|
de.lmu.ifi.dbs.elki.database.query.knn |
Prepared queries for k nearest neighbor (kNN) queries
|
de.lmu.ifi.dbs.elki.database.query.range |
Prepared queries for ε-range queries, that return all objects within
the radius ε
|
de.lmu.ifi.dbs.elki.database.query.rknn |
Prepared queries for reverse k nearest neighbor (rkNN) queries
|
de.lmu.ifi.dbs.elki.database.relation |
Relations, materialized and virtual (views)
|
de.lmu.ifi.dbs.elki.distance.distancefunction |
Distance functions for use within ELKI.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter |
Distance functions deriving distances from, e.g., similarity measures
|
de.lmu.ifi.dbs.elki.distance.distancefunction.external |
Distance functions using external data sources
|
de.lmu.ifi.dbs.elki.evaluation.clustering.internal |
Internal evaluation measures for clusterings.
|
de.lmu.ifi.dbs.elki.index |
Index structure implementations
|
de.lmu.ifi.dbs.elki.index.distancematrix |
Precomputed distance matrix.
|
de.lmu.ifi.dbs.elki.index.idistance |
iDistance is a distance based indexing technique, using a reference points embedding.
|
de.lmu.ifi.dbs.elki.index.invertedlist |
Indexes using inverted lists.
|
de.lmu.ifi.dbs.elki.index.lsh |
Locality Sensitive Hashing
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.index.projected |
Projected indexes for data
|
de.lmu.ifi.dbs.elki.index.tree.metrical.covertree |
Cover-tree variations.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees |
Metrical index structures based on the concepts of the M-Tree
supporting processing of reverse k nearest neighbor queries by
using the k-nn distances of the entries
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query |
Classes for performing queries (knn, range, ...) on metrical trees
|
de.lmu.ifi.dbs.elki.index.tree.spatial.kd |
K-d-tree and variants
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.flat | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rdknn | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | |
de.lmu.ifi.dbs.elki.index.vafile |
Vector Approximation File
|
Modifier and Type | Field and Description |
---|---|
private DistanceQuery<?> |
AbstractHDBSCAN.HDBSCANAdapter.distq
Distance query for exact distances.
|
Modifier and Type | Method and Description |
---|---|
private static double |
MiniMax.findMax(DistanceQuery<?> dq,
DBIDIter i,
DBIDs cy,
double maxDist,
double minMaxDist)
Find the maximum distance of one object to a set.
|
protected static int |
MiniMax.findMerge(int end,
MatrixParadigm mat,
DBIDArrayMIter prots,
PointerHierarchyRepresentationBuilder builder,
it.unimi.dsi.fastutil.ints.Int2ObjectOpenHashMap<ModifiableDBIDs> clusters,
DistanceQuery<?> dq)
Find the best merge.
|
protected int |
MiniMaxAnderberg.findMerge(int size,
MatrixParadigm mat,
DBIDArrayMIter prots,
PointerHierarchyRepresentationBuilder builder,
it.unimi.dsi.fastutil.ints.Int2ObjectOpenHashMap<ModifiableDBIDs> clusters,
double[] bestd,
int[] besti,
DistanceQuery<O> dq)
Perform the next merge step.
|
private static double |
MiniMax.findPrototype(DistanceQuery<?> dq,
DBIDs cx,
DBIDs cy,
DBIDVar prototype,
double minMaxDist)
Find the prototypes.
|
private static double |
MiniMax.findPrototypeSingleton(DistanceQuery<?> dq,
DBIDs cx,
DBIDRef cy,
DBIDVar prototype)
Find the prototypes.
|
protected static void |
AGNES.initializeDistanceMatrix(MatrixParadigm mat,
DistanceQuery<?> dq,
Linkage linkage)
Initialize a distance matrix.
|
protected static <O> void |
MiniMax.initializeMatrices(MatrixParadigm mat,
ArrayModifiableDBIDs prots,
DistanceQuery<O> dq)
Initializes the inter-cluster distance matrix of possible merges
|
MatrixParadigm |
MatrixParadigm.initializeWithDistances(DistanceQuery<?> dq)
Initialize a distance matrix.
|
protected static void |
MiniMax.merge(int size,
MatrixParadigm mat,
DBIDArrayMIter prots,
PointerHierarchyRepresentationBuilder builder,
it.unimi.dsi.fastutil.ints.Int2ObjectOpenHashMap<ModifiableDBIDs> clusters,
DistanceQuery<?> dq,
int x,
int y)
Merges two clusters given by x, y, their points with smallest IDs, and y to
keep
|
protected void |
MiniMaxAnderberg.merge(int size,
MatrixParadigm mat,
DBIDArrayMIter prots,
PointerHierarchyRepresentationBuilder builder,
it.unimi.dsi.fastutil.ints.Int2ObjectOpenHashMap<ModifiableDBIDs> clusters,
DistanceQuery<O> dq,
double[] bestd,
int[] besti,
int x,
int y)
Execute the cluster merge
|
private void |
MiniMaxNNChain.nnChainCore(MatrixParadigm mat,
DBIDArrayMIter prots,
DistanceQuery<O> dq,
PointerHierarchyRepresentationBuilder builder,
it.unimi.dsi.fastutil.ints.Int2ObjectOpenHashMap<ModifiableDBIDs> clusters)
Uses NNChain as in "Modern hierarchical, agglomerative clustering
algorithms" by Daniel Müllner
|
private void |
SLINK.step2(DBIDRef id,
DBIDArrayIter it,
int n,
DistanceQuery<? super O> distQuery,
WritableDoubleDataStore m)
Second step: Determine the pairwise distances from all objects in the
pointer representation to the new object with the specified id.
|
private void |
SLINKHDBSCANLinearMemory.step2(DBIDRef id,
DBIDs processedIDs,
DistanceQuery<? super O> distQuery,
DoubleDataStore coredists,
WritableDoubleDataStore m)
Second step: Determine the pairwise distances from all objects in the
pointer representation to the new object with the specified id.
|
protected static void |
MiniMax.updateEntry(MatrixParadigm mat,
DBIDArrayMIter prots,
it.unimi.dsi.fastutil.ints.Int2ObjectOpenHashMap<ModifiableDBIDs> clusters,
DistanceQuery<?> dq,
int x,
int y)
Update entry at x,y for distance matrix distances
|
private void |
MiniMaxAnderberg.updateMatrices(int size,
MatrixParadigm mat,
DBIDArrayMIter prots,
PointerHierarchyRepresentationBuilder builder,
it.unimi.dsi.fastutil.ints.Int2ObjectOpenHashMap<ModifiableDBIDs> clusters,
DistanceQuery<O> dq,
double[] bestd,
int[] besti,
int x,
int y)
Update the entries of the matrices that contain a distance to y, the newly
merged cluster.
|
protected static <O> void |
MiniMax.updateMatrices(int size,
MatrixParadigm mat,
DBIDArrayMIter prots,
PointerHierarchyRepresentationBuilder builder,
it.unimi.dsi.fastutil.ints.Int2ObjectOpenHashMap<ModifiableDBIDs> clusters,
DistanceQuery<O> dq,
int c)
Update the entries of the matrices that contain a distance to c, the newly
merged cluster.
|
Constructor and Description |
---|
HDBSCANAdapter(ArrayDBIDs ids,
DoubleDataStore coredists,
DistanceQuery<?> distq)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
(package private) static class |
CLARA.CachedDistanceQuery<V>
Cached distance query.
|
Modifier and Type | Field and Description |
---|---|
(package private) DistanceQuery<?> |
KMedoidsPAM.Instance.distQ
Distance function to use.
|
(package private) DistanceQuery<?> |
CLARANS.Assignment.distQ
Distance function to use.
|
(package private) DistanceQuery<V> |
CLARA.CachedDistanceQuery.inner
Inner distance query
|
Modifier and Type | Method and Description |
---|---|
(package private) static double |
CLARA.assignRemainingToNearestCluster(ArrayDBIDs means,
DBIDs ids,
DBIDs rids,
WritableIntegerDataStore assignment,
DistanceQuery<?> distQ)
Returns a list of clusters.
|
protected double |
KMedoidsPark.assignToNearestCluster(DBIDArrayIter miter,
double[] dsum,
java.util.List<? extends ModifiableDBIDs> clusters,
DistanceQuery<V> distQ)
Returns a list of clusters.
|
protected ArrayModifiableDBIDs |
KMedoidsPAM.initialMedoids(DistanceQuery<V> distQ,
DBIDs ids)
Choose the initial medoids.
|
protected void |
KMedoidsFastPAM.run(DistanceQuery<V> distQ,
DBIDs ids,
ArrayModifiableDBIDs medoids,
WritableIntegerDataStore assignment) |
protected void |
KMedoidsFastPAM1.run(DistanceQuery<V> distQ,
DBIDs ids,
ArrayModifiableDBIDs medoids,
WritableIntegerDataStore assignment) |
protected void |
KMedoidsPAM.run(DistanceQuery<V> distQ,
DBIDs ids,
ArrayModifiableDBIDs medoids,
WritableIntegerDataStore assignment)
Run the main algorithm.
|
protected void |
KMedoidsPAMReynolds.run(DistanceQuery<V> distQ,
DBIDs ids,
ArrayModifiableDBIDs medoids,
WritableIntegerDataStore assignment) |
Constructor and Description |
---|
Assignment(DistanceQuery<?> distQ,
DBIDs ids,
int k)
Constructor.
|
Assignment(DistanceQuery<?> distQ,
DBIDs ids,
int k)
Constructor.
|
CachedDistanceQuery(DistanceQuery<V> inner,
int size)
Constructor.
|
Instance(DistanceQuery<?> distQ,
DBIDs ids,
WritableIntegerDataStore assignment)
Constructor.
|
Instance(DistanceQuery<?> distQ,
DBIDs ids,
WritableIntegerDataStore assignment)
Constructor.
|
Instance(DistanceQuery<?> distQ,
DBIDs ids,
WritableIntegerDataStore assignment)
Constructor.
|
Instance(DistanceQuery<?> distQ,
DBIDs ids,
WritableIntegerDataStore assignment,
double fasttol)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
PAMInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ) |
DBIDs |
FirstKInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distanceFunction) |
DBIDs |
FarthestPointsInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ) |
DBIDs |
ParkInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ) |
DBIDs |
FarthestSumPointsInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ) |
DBIDs |
LABInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ) |
DBIDs |
KMeansPlusPlusInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ) |
DBIDs |
RandomlyChosenInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distanceFunction) |
DBIDs |
KMedoidsInitialization.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super V> distanceFunction)
Choose initial means
|
(package private) static void |
KMeansPlusPlusInitialMeans.chooseRemaining(DBIDs ids,
DistanceQuery<?> distQ,
int k,
ArrayModifiableDBIDs means,
WritableDoubleDataStore weights,
double weightsum,
java.util.Random random)
Choose remaining means, weighted by distance.
|
(package private) static void |
KMeansPlusPlusInitialMeans.chooseRemaining(Relation<? extends NumberVector> relation,
DBIDs ids,
DistanceQuery<NumberVector> distQ,
int k,
java.util.List<NumberVector> means,
WritableDoubleDataStore weights,
double weightsum,
java.util.Random random)
Choose remaining means, weighted by distance.
|
protected static double |
LABInitialMeans.getMinDist(DBIDArrayIter j,
DistanceQuery<?> distQ,
DBIDArrayIter mi,
WritableDoubleDataStore mindist)
Get the minimum distance to previous medoids.
|
(package private) static double |
KMeansPlusPlusInitialMeans.initialWeights(WritableDoubleDataStore weights,
DBIDs ids,
DBIDRef latest,
DistanceQuery<?> distQ)
Initialize the weight list.
|
(package private) static double |
KMeansPlusPlusInitialMeans.initialWeights(WritableDoubleDataStore weights,
DBIDs ids,
NumberVector first,
DistanceQuery<? super NumberVector> distQ)
Initialize the weight list.
|
protected static <T> double |
OstrovskyInitialMeans.initialWeights(WritableDoubleDataStore weights,
Relation<? extends T> relation,
DBIDs ids,
T first,
T second,
DistanceQuery<? super T> distQ)
Initialize the weight list.
|
private static double |
KMeansPlusPlusInitialMeans.updateWeights(WritableDoubleDataStore weights,
DBIDs ids,
DBIDRef latest,
DistanceQuery<?> distQ)
Update the weight list.
|
private static double |
KMeansPlusPlusInitialMeans.updateWeights(WritableDoubleDataStore weights,
DBIDs ids,
NumberVector latest,
DistanceQuery<? super NumberVector> distQ)
Update the weight list.
|
Modifier and Type | Method and Description |
---|---|
protected void |
FastOPTICS.expandClusterOrder(DBID ipt,
ClusterOrder order,
DistanceQuery<V> dq,
FiniteProgress prog)
OPTICS algorithm for processing a point, but with different density
estimates
|
Modifier and Type | Method and Description |
---|---|
private long[][] |
PROCLUS.findDimensions(ArrayDBIDs medoids,
Relation<V> database,
DistanceQuery<V> distFunc,
RangeQuery<V> rangeQuery)
Determines the set of correlated dimensions for each medoid in the
specified medoid set.
|
private DataStore<DBIDs> |
PROCLUS.getLocalities(DBIDs medoids,
DistanceQuery<V> distFunc,
RangeQuery<V> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the
objects in the sphere centered at m with radius minDist are determined,
where minDist is the minimum distance between medoid m and any other medoid
m_i.
|
private ArrayDBIDs |
PROCLUS.greedy(DistanceQuery<V> distFunc,
DBIDs sampleSet,
int m,
java.util.Random random)
Returns a piercing set of k medoids from the specified sample set.
|
Modifier and Type | Method and Description |
---|---|
private void |
DWOF.initializeRadii(DBIDs ids,
KNNQuery<O> knnq,
DistanceQuery<O> distFunc,
WritableDoubleDataStore radii)
This method prepares a container for the radii of the objects and
initializes radii according to the equation:
initialRadii of a certain object = (absoluteMinDist of all objects) *
(avgDist of the object) / (minAvgDist of all objects)
|
Modifier and Type | Field and Description |
---|---|
private DistanceQuery<O> |
HilOut.distq
Distance query
|
Modifier and Type | Method and Description |
---|---|
protected void |
COF.computeAverageChainingDistances(KNNQuery<O> knnq,
DistanceQuery<O> dq,
DBIDs ids,
WritableDoubleDataStore acds)
Computes the average chaining distance, the average length of a path
through the given set of points to each target.
|
Modifier and Type | Method and Description |
---|---|
protected double[][] |
GaussianAffinityMatrixBuilder.buildDistanceMatrix(ArrayDBIDs ids,
DistanceQuery<?> dq)
Build a distance matrix of squared distances.
|
Modifier and Type | Method and Description |
---|---|
private void |
EvaluateRetrievalPerformance.computeDistances(ModifiableDoubleDBIDList nlist,
DBIDIter query,
DistanceQuery<O> distQuery,
Relation<O> relation)
Compute the distances to the neighbor objects.
|
private DoubleMinMax |
DistanceStatisticsWithClasses.exactMinMax(Relation<O> relation,
DistanceQuery<O> distFunc)
Compute the exact maximum and minimum.
|
private DoubleMinMax |
DistanceStatisticsWithClasses.sampleMinMax(Relation<O> relation,
DistanceQuery<O> distFunc)
Estimate minimum and maximum via sampling.
|
Modifier and Type | Method and Description |
---|---|
static <O> DistanceQuery<O> |
QueryUtil.getDistanceQuery(Database database,
DistanceFunction<? super O> distanceFunction,
java.lang.Object... hints)
Get a distance query for a given distance function, automatically choosing
a relation.
|
<O> DistanceQuery<O> |
Database.getDistanceQuery(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
java.lang.Object... hints)
Get the distance query for a particular distance function.
|
<O> DistanceQuery<O> |
AbstractDatabase.getDistanceQuery(Relation<O> objQuery,
DistanceFunction<? super O> distanceFunction,
java.lang.Object... hints) |
static <O> DistanceQuery<O> |
DatabaseUtil.precomputedDistanceQuery(Database database,
Relation<O> relation,
DistanceFunction<? super O> distf,
Logging log)
Get (or create) a precomputed distance query for the database.
|
Modifier and Type | Method and Description |
---|---|
<O> KNNQuery<O> |
Database.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints)
Get a KNN query object for the given distance query.
|
<O> KNNQuery<O> |
AbstractDatabase.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
static <O> KNNQuery<O> |
QueryUtil.getLinearScanKNNQuery(DistanceQuery<O> distanceQuery)
Get a linear scan query for the given distance query.
|
static <O> RangeQuery<O> |
QueryUtil.getLinearScanRangeQuery(DistanceQuery<O> distanceQuery)
Get a linear scan query for the given distance query.
|
<O> RangeQuery<O> |
Database.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints)
Get a range query object for the given distance query for radius-based
neighbor search.
|
<O> RangeQuery<O> |
AbstractDatabase.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
<O> RKNNQuery<O> |
Database.getRKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints)
Get a rKNN query object for the given distance query.
|
<O> RKNNQuery<O> |
AbstractDatabase.getRKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
static <O> KNNQuery<O> |
DatabaseUtil.precomputedKNNQuery(Database database,
Relation<O> relation,
DistanceQuery<O> dq,
int k)
Get (or create) a precomputed kNN query for the database.
|
Modifier and Type | Interface and Description |
---|---|
interface |
DistanceSimilarityQuery<O>
Interface that is a combination of distance and a similarity function.
|
Modifier and Type | Interface and Description |
---|---|
interface |
DatabaseDistanceQuery<O>
Run a database query in a database context.
|
interface |
SpatialDistanceQuery<V extends SpatialComparable>
Query interface for spatial distance queries.
|
Modifier and Type | Class and Description |
---|---|
class |
DBIDDistanceQuery
Run a distance query based on DBIDs
|
class |
DBIDRangeDistanceQuery
Run a distance query based on DBIDRanges
|
class |
PrimitiveDistanceQuery<O>
Run a database query in a database context.
|
class |
PrimitiveDistanceSimilarityQuery<O>
Combination query class, for convenience.
|
class |
SpatialPrimitiveDistanceQuery<V extends SpatialComparable>
Distance query for spatial distance functions
|
class |
SpatialPrimitiveDistanceSimilarityQuery<O extends SpatialComparable>
Combination query class, to allow combined implementations of spatial
distances and similarities.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceQuery<O> |
AbstractDistanceKNNQuery.distanceQuery
Hold the distance function to be used.
|
Constructor and Description |
---|
AbstractDistanceKNNQuery(DistanceQuery<O> distanceQuery)
Constructor.
|
LinearScanDistanceKNNQuery(DistanceQuery<O> distanceQuery)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceQuery<O> |
AbstractDistanceRangeQuery.distanceQuery
Hold the distance function to be used.
|
Constructor and Description |
---|
AbstractDistanceRangeQuery(DistanceQuery<O> distanceQuery)
Constructor.
|
LinearScanDistanceRangeQuery(DistanceQuery<O> distanceQuery)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceQuery<O> |
AbstractRKNNQuery.distanceQuery
Hold the distance function to be used.
|
Constructor and Description |
---|
AbstractRKNNQuery(DistanceQuery<O> distanceQuery)
Constructor.
|
LinearScanRKNNQuery(DistanceQuery<O> distanceQuery,
KNNQuery<O> knnQuery,
java.lang.Integer maxk)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DistanceQuery<O> |
Relation.getDistanceQuery(DistanceFunction<? super O> distanceFunction,
java.lang.Object... hints)
Get the distance query for a particular distance function.
|
DistanceQuery<O> |
AbstractRelation.getDistanceQuery(DistanceFunction<? super O> distanceFunction,
java.lang.Object... hints) |
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
Relation.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints)
Get a KNN query object for the given distance query.
|
KNNQuery<O> |
AbstractRelation.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
Relation.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints)
Get a range query object for the given distance query.
|
RangeQuery<O> |
AbstractRelation.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RKNNQuery<O> |
Relation.getRKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints)
Get a rKNN query object for the given distance query.
|
RKNNQuery<O> |
AbstractRelation.getRKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
Modifier and Type | Interface and Description |
---|---|
static interface |
IndexBasedDistanceFunction.Instance<T,I extends Index>
Instance interface for Index based distance functions.
|
Modifier and Type | Class and Description |
---|---|
static class |
AbstractDatabaseDistanceFunction.Instance<O>
The actual instance bound to a particular database.
|
static class |
AbstractIndexBasedDistanceFunction.Instance<O,I extends Index,F extends DistanceFunction<? super O>>
The actual instance bound to a particular database.
|
static class |
SharedNearestNeighborJaccardDistanceFunction.Instance<T>
Actual instance for a dataset.
|
Modifier and Type | Method and Description |
---|---|
<O extends DBID> |
AbstractDBIDRangeDistanceFunction.instantiate(Relation<O> database) |
<T extends DBID> |
RandomStableDistanceFunction.instantiate(Relation<T> relation) |
<T extends O> |
DistanceFunction.instantiate(Relation<T> relation)
Instantiate with a database to get the actual distance query.
|
default <T extends O> |
PrimitiveDistanceFunction.instantiate(Relation<T> relation) |
Modifier and Type | Class and Description |
---|---|
static class |
AbstractSimilarityAdapter.Instance<O>
Inner proxy class for SNN distance function.
|
static class |
ArccosSimilarityAdapter.Instance<O>
Distance function instance
|
static class |
LinearAdapterLinear.Instance<O>
Distance function instance
|
static class |
LnSimilarityAdapter.Instance<O>
Distance function instance
|
Modifier and Type | Method and Description |
---|---|
abstract <T extends O> |
AbstractSimilarityAdapter.instantiate(Relation<T> database) |
<T extends O> |
LnSimilarityAdapter.instantiate(Relation<T> database) |
<T extends O> |
ArccosSimilarityAdapter.instantiate(Relation<T> database) |
<T extends O> |
LinearAdapterLinear.instantiate(Relation<T> database) |
Modifier and Type | Method and Description |
---|---|
<O extends DBID> |
FileBasedSparseFloatDistanceFunction.instantiate(Relation<O> relation) |
<O extends DBID> |
FileBasedSparseDoubleDistanceFunction.instantiate(Relation<O> relation) |
Modifier and Type | Method and Description |
---|---|
double |
EvaluateCIndex.evaluateClustering(Database db,
Relation<? extends O> rel,
DistanceQuery<O> dq,
Clustering<?> c)
Evaluate a single clustering.
|
double |
EvaluateSilhouette.evaluateClustering(Database db,
Relation<O> rel,
DistanceQuery<O> dq,
Clustering<?> c)
Evaluate a single clustering.
|
protected double |
EvaluateCIndex.processCluster(Cluster<?> cluster,
java.util.List<? extends Cluster<?>> clusters,
int i,
DistanceQuery<O> dq,
DoubleHeap maxDists,
DoubleHeap minDists,
int w) |
protected void |
EvaluateCIndex.processSingleton(Cluster<?> cluster,
Relation<? extends O> rel,
DistanceQuery<O> dq,
DoubleHeap maxDists,
DoubleHeap minDists,
int w) |
Modifier and Type | Method and Description |
---|---|
DistanceQuery<O> |
DistanceIndex.getDistanceQuery(DistanceFunction<? super O> distanceFunction,
java.lang.Object... hints)
Get a KNN query object for the given distance query and k.
|
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
KNNIndex.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints)
Get a KNN query object for the given distance query and k.
|
RangeQuery<O> |
RangeIndex.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints)
Get a range query object for the given distance query and k.
|
RKNNQuery<O> |
RKNNIndex.getRKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints)
Get a KNN query object for the given distance query and k.
|
Constructor and Description |
---|
AbstractKNNQuery(DistanceQuery<O> distanceQuery)
Constructor.
|
AbstractRangeQuery(DistanceQuery<O> distanceQuery)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
private class |
PrecomputedDistanceMatrix.PrecomputedDistanceQuery
Distance query using the precomputed matrix.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceQuery<O> |
PrecomputedDistanceMatrix.distanceQuery
Nested distance query.
|
Modifier and Type | Method and Description |
---|---|
DistanceQuery<O> |
PrecomputedDistanceMatrix.getDistanceQuery(DistanceFunction<? super O> distanceFunction,
java.lang.Object... hints) |
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
PrecomputedDistanceMatrix.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
PrecomputedDistanceMatrix.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
Modifier and Type | Field and Description |
---|---|
private DistanceQuery<O> |
InMemoryIDistanceIndex.distanceQuery
Distance query.
|
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
InMemoryIDistanceIndex.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
InMemoryIDistanceIndex.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
protected static <O> DoubleIntPair[] |
InMemoryIDistanceIndex.rankReferencePoints(DistanceQuery<O> distanceQuery,
O obj,
ArrayDBIDs referencepoints)
Sort the reference points by distance to the query object
|
Constructor and Description |
---|
IDistanceKNNQuery(DistanceQuery<O> distanceQuery)
Constructor.
|
IDistanceRangeQuery(DistanceQuery<O> distanceQuery)
Constructor.
|
InMemoryIDistanceIndex(Relation<O> relation,
DistanceQuery<O> distance,
KMedoidsInitialization<O> initialization,
int numref)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
KNNQuery<V> |
InMemoryInvertedIndex.getKNNQuery(DistanceQuery<V> distanceQuery,
java.lang.Object... hints) |
RangeQuery<V> |
InMemoryInvertedIndex.getRangeQuery(DistanceQuery<V> distanceQuery,
java.lang.Object... hints) |
Constructor and Description |
---|
ArcCosineKNNQuery(DistanceQuery<V> distanceQuery)
Constructor.
|
ArcCosineRangeQuery(DistanceQuery<V> distanceQuery)
Constructor.
|
CosineKNNQuery(DistanceQuery<V> distanceQuery)
Constructor.
|
CosineRangeQuery(DistanceQuery<V> distanceQuery)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
KNNQuery<V> |
InMemoryLSHIndex.Instance.getKNNQuery(DistanceQuery<V> distanceQuery,
java.lang.Object... hints) |
RangeQuery<V> |
InMemoryLSHIndex.Instance.getRangeQuery(DistanceQuery<V> distanceQuery,
java.lang.Object... hints) |
Constructor and Description |
---|
LSHKNNQuery(DistanceQuery<V> distanceQuery)
Constructor.
|
LSHRangeQuery(DistanceQuery<V> distanceQuery)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceQuery<O> |
AbstractMaterializeKNNPreprocessor.distanceQuery
The distance query we used.
|
(package private) DistanceQuery<O> |
NaiveProjectedKNNPreprocessor.NaiveProjectedKNNQuery.distq
Distance query to use for refinement
|
(package private) DistanceQuery<O> |
SpacefillingKNNPreprocessor.SpaceFillingKNNQuery.distq
Distance query to use for refinement
|
Modifier and Type | Method and Description |
---|---|
DistanceQuery<O> |
AbstractMaterializeKNNPreprocessor.getDistanceQuery()
The distance query we used.
|
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
NNDescent.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
KNNQuery<O> |
NaiveProjectedKNNPreprocessor.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
KNNQuery<O> |
SpacefillingMaterializeKNNPreprocessor.getKNNQuery(DistanceQuery<O> distQ,
java.lang.Object... hints) |
KNNQuery<O> |
SpacefillingKNNPreprocessor.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
KNNQuery<O> |
AbstractMaterializeKNNPreprocessor.getKNNQuery(DistanceQuery<O> distQ,
java.lang.Object... hints) |
RKNNQuery<O> |
MaterializeKNNAndRKNNPreprocessor.getRKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
Constructor and Description |
---|
NaiveProjectedKNNQuery(DistanceQuery<O> distanceQuery)
Constructor.
|
SpaceFillingKNNQuery(DistanceQuery<O> distanceQuery)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) DistanceQuery<O> |
ProjectedIndex.ProjectedKNNQuery.distq
Distance query for refinement.
|
(package private) DistanceQuery<O> |
ProjectedIndex.ProjectedRKNNQuery.distq
Distance query for refinement.
|
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
LatLngAsECEFIndex.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
KNNQuery<O> |
LngLatAsECEFIndex.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
KNNQuery<O> |
ProjectedIndex.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
LatLngAsECEFIndex.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
LngLatAsECEFIndex.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
ProjectedIndex.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RKNNQuery<O> |
LatLngAsECEFIndex.getRKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RKNNQuery<O> |
LngLatAsECEFIndex.getRKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RKNNQuery<O> |
ProjectedIndex.getRKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
Constructor and Description |
---|
ProjectedKNNQuery(DistanceQuery<O> distanceQuery,
KNNQuery<I> inner)
Constructor.
|
ProjectedRangeQuery(DistanceQuery<O> distanceQuery,
RangeQuery<I> inner)
Constructor.
|
ProjectedRKNNQuery(DistanceQuery<O> distanceQuery,
RKNNQuery<I> inner)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DistanceQuery<O> |
AbstractCoverTree.distanceQuery
Distance query, on the data relation.
|
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
CoverTree.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
KNNQuery<O> |
SimplifiedCoverTree.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
CoverTree.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
SimplifiedCoverTree.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
Constructor and Description |
---|
CoverTreeKNNQuery(DistanceQuery<O> distanceQuery)
Constructor.
|
CoverTreeKNNQuery(DistanceQuery<O> distanceQuery)
Constructor.
|
CoverTreeRangeQuery(DistanceQuery<O> distanceQuery)
Constructor.
|
CoverTreeRangeQuery(DistanceQuery<O> distanceQuery)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DistanceQuery<O> |
AbstractMkTree.distanceQuery
Distance query to use.
|
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
MkAppTreeIndex.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
MkAppTreeIndex.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RKNNQuery<O> |
MkAppTreeIndex.getRKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
MkCoPTreeIndex.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
MkCoPTreeIndex.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RKNNQuery<O> |
MkCoPTreeIndex.getRKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
MkMaxTreeIndex.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
MkMaxTreeIndex.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RKNNQuery<O> |
MkMaxTreeIndex.getRKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
MkTabTreeIndex.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
MkTabTreeIndex.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RKNNQuery<O> |
MkTabTreeIndex.getRKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
Modifier and Type | Field and Description |
---|---|
protected DistanceQuery<O> |
MTreeIndex.distanceQuery
The distance query.
|
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
MTreeIndex.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
MTreeIndex.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
Constructor and Description |
---|
MkTreeRKNNQuery(AbstractMkTree<O,?,?,?> index,
DistanceQuery<O> distanceQuery)
Constructor.
|
MTreeKNNQuery(AbstractMTree<O,?,?,?> index,
DistanceQuery<O> distanceQuery)
Constructor.
|
MTreeRangeQuery(AbstractMTree<O,?,?,?> index,
DistanceQuery<O> distanceQuery)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
MinimalisticMemoryKDTree.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
KNNQuery<O> |
SmallMemoryKDTree.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
MinimalisticMemoryKDTree.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
SmallMemoryKDTree.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
Constructor and Description |
---|
KDTreeKNNQuery(DistanceQuery<O> distanceQuery,
Norm<? super O> norm)
Constructor.
|
KDTreeKNNQuery(DistanceQuery<O> distanceQuery,
Norm<? super O> norm)
Constructor.
|
KDTreeRangeQuery(DistanceQuery<O> distanceQuery,
Norm<? super O> norm)
Constructor.
|
KDTreeRangeQuery(DistanceQuery<O> distanceQuery,
Norm<? super O> norm)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
DeLiCluTreeIndex.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
DeLiCluTreeIndex.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
FlatRStarTreeIndex.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
FlatRStarTreeIndex.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
RdKNNTree.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
RdKNNTree.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RKNNQuery<O> |
RdKNNTree.getRKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
Modifier and Type | Method and Description |
---|---|
KNNQuery<O> |
RStarTreeIndex.getKNNQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
RangeQuery<O> |
RStarTreeIndex.getRangeQuery(DistanceQuery<O> distanceQuery,
java.lang.Object... hints) |
Modifier and Type | Method and Description |
---|---|
KNNQuery<V> |
PartialVAFile.getKNNQuery(DistanceQuery<V> distanceQuery,
java.lang.Object... hints) |
KNNQuery<V> |
VAFile.getKNNQuery(DistanceQuery<V> distanceQuery,
java.lang.Object... hints) |
RangeQuery<V> |
PartialVAFile.getRangeQuery(DistanceQuery<V> distanceQuery,
java.lang.Object... hints) |
RangeQuery<V> |
VAFile.getRangeQuery(DistanceQuery<V> distanceQuery,
java.lang.Object... hints) |
Constructor and Description |
---|
PartialVAFileKNNQuery(DistanceQuery<V> ddq,
double p,
long[] subspace)
Constructor.
|
PartialVAFileRangeQuery(DistanceQuery<V> ddq,
double p,
long[] subspace)
Constructor.
|
VAFileKNNQuery(DistanceQuery<V> distanceQuery,
double p)
Constructor.
|
VAFileRangeQuery(DistanceQuery<V> distanceQuery,
double p)
Constructor.
|
Copyright © 2019 ELKI Development Team. License information.