| Modifier and Type | Field and Description | 
|---|---|
protected NumberVectorDistanceFunction<? super O> | 
AbstractNumberVectorDistanceBasedAlgorithm.distanceFunction
Holds the instance of the distance function specified by
  
DistanceBasedAlgorithm.DISTANCE_FUNCTION_ID. | 
protected NumberVectorDistanceFunction<? super O> | 
AbstractNumberVectorDistanceBasedAlgorithm.Parameterizer.distanceFunction
Distance function to use. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
NumberVectorDistanceFunction<? super O> | 
AbstractNumberVectorDistanceBasedAlgorithm.getDistanceFunction()
Returns the distanceFunction. 
 | 
| Constructor and Description | 
|---|
AbstractNumberVectorDistanceBasedAlgorithm(NumberVectorDistanceFunction<? super O> distanceFunction)
Constructor. 
 | 
DependencyDerivator(NumberVectorDistanceFunction<? super V> distanceFunction,
                   NumberFormat nf,
                   PCAFilteredRunner pca,
                   int sampleSize,
                   boolean randomsample)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
List<SphericalGaussianModel> | 
SphericalGaussianModelFactory.buildInitialModels(Database database,
                  Relation<V> relation,
                  int k,
                  NumberVectorDistanceFunction<? super V> df)  | 
List<MultivariateGaussianModel> | 
MultivariateGaussianModelFactory.buildInitialModels(Database database,
                  Relation<V> relation,
                  int k,
                  NumberVectorDistanceFunction<? super V> df)  | 
List<? extends EMClusterModel<M>> | 
EMClusterModelFactory.buildInitialModels(Database database,
                  Relation<V> relation,
                  int k,
                  NumberVectorDistanceFunction<? super V> df)
Build the initial models 
 | 
List<DiagonalGaussianModel> | 
DiagonalGaussianModelFactory.buildInitialModels(Database database,
                  Relation<V> relation,
                  int k,
                  NumberVectorDistanceFunction<? super V> df)  | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
KMeansBisecting.setDistanceFunction(NumberVectorDistanceFunction<? super V> distanceFunction)  | 
void | 
KMeans.setDistanceFunction(NumberVectorDistanceFunction<? super V> distanceFunction)
Set the distance function to use. 
 | 
void | 
BestOfMultipleKMeans.setDistanceFunction(NumberVectorDistanceFunction<? super V> distanceFunction)  | 
void | 
AbstractKMeans.setDistanceFunction(NumberVectorDistanceFunction<? super V> distanceFunction)  | 
| Constructor and Description | 
|---|
AbstractKMeans(NumberVectorDistanceFunction<? super V> distanceFunction,
              int k,
              int maxiter,
              KMeansInitialization<? super V> initializer)
Constructor. 
 | 
KMeansBatchedLloyd(NumberVectorDistanceFunction<? super V> distanceFunction,
                  int k,
                  int maxiter,
                  KMeansInitialization<? super V> initializer,
                  int blocks,
                  RandomFactory random)
Constructor. 
 | 
KMeansCompare(NumberVectorDistanceFunction<? super V> distanceFunction,
             int k,
             int maxiter,
             KMeansInitialization<? super V> initializer)
Constructor. 
 | 
KMeansElkan(NumberVectorDistanceFunction<? super V> distanceFunction,
           int k,
           int maxiter,
           KMeansInitialization<? super V> initializer,
           boolean varstat)
Constructor. 
 | 
KMeansHamerly(NumberVectorDistanceFunction<? super V> distanceFunction,
             int k,
             int maxiter,
             KMeansInitialization<? super V> initializer,
             boolean varstat)
Constructor. 
 | 
KMeansHybridLloydMacQueen(NumberVectorDistanceFunction<? super V> distanceFunction,
                         int k,
                         int maxiter,
                         KMeansInitialization<? super V> initializer)
Constructor. 
 | 
KMeansLloyd(NumberVectorDistanceFunction<? super V> distanceFunction,
           int k,
           int maxiter,
           KMeansInitialization<? super V> initializer)
Constructor. 
 | 
KMeansMacQueen(NumberVectorDistanceFunction<? super V> distanceFunction,
              int k,
              int maxiter,
              KMeansInitialization<? super V> initializer)
Constructor. 
 | 
KMeansSort(NumberVectorDistanceFunction<? super V> distanceFunction,
          int k,
          int maxiter,
          KMeansInitialization<? super V> initializer)
Constructor. 
 | 
KMediansLloyd(NumberVectorDistanceFunction<? super V> distanceFunction,
             int k,
             int maxiter,
             KMeansInitialization<? super V> initializer)
Constructor. 
 | 
SingleAssignmentKMeans(NumberVectorDistanceFunction<? super V> distanceFunction,
                      int k,
                      KMeansInitialization<? super V> initializer)
Constructor. 
 | 
XMeans(NumberVectorDistanceFunction<? super V> distanceFunction,
      int k_min,
      int k_max,
      int maxiter,
      KMeans<V,M> innerKMeans,
      KMeansInitialization<? super V> initializer,
      PredefinedInitialMeans splitInitializer,
      KMeansQualityMeasure<V> informationCriterion,
      RandomFactory random)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<T extends NumberVector,O extends NumberVector>  | 
PredefinedInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<O> factory)  | 
<T extends V,O extends NumberVector>  | 
SampleKMeansInitialization.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<O> factory)  | 
<T extends V,O extends NumberVector>  | 
KMeansInitialization.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<O> factory)
Choose initial means 
 | 
<T extends NumberVector,V extends NumberVector>  | 
RandomlyGeneratedInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<V> factory)  | 
<T extends NumberVector,V extends NumberVector>  | 
RandomlyChosenInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<V> factory)  | 
<T extends NumberVector,V extends NumberVector>  | 
PAMInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<V> factory)  | 
<T extends NumberVector,V extends NumberVector>  | 
KMeansPlusPlusInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<V> factory)  | 
<T extends NumberVector,V extends NumberVector>  | 
FirstKInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<V> factory)  | 
<T extends NumberVector,V extends NumberVector>  | 
FarthestSumPointsInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<V> factory)  | 
<T extends NumberVector,V extends NumberVector>  | 
FarthestPointsInitialMeans.chooseInitialMeans(Database database,
                  Relation<T> relation,
                  int k,
                  NumberVectorDistanceFunction<? super T> distanceFunction,
                  NumberVector.Factory<V> factory)  | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) NumberVectorDistanceFunction<? super V> | 
KMeansProcessor.distance
Distance function. 
 | 
private NumberVectorDistanceFunction<? super V> | 
KMeansProcessor.Instance.distance
Distance function. 
 | 
| Constructor and Description | 
|---|
KMeansProcessor.Instance(Relation<V> relation,
                        NumberVectorDistanceFunction<? super V> distance,
                        WritableIntegerDataStore assignment,
                        List<? extends NumberVector> means)
Constructor. 
 | 
KMeansProcessor(Relation<V> relation,
               NumberVectorDistanceFunction<? super V> distance,
               WritableIntegerDataStore assignment,
               double[] varsum)
Constructor. 
 | 
ParallelLloydKMeans(NumberVectorDistanceFunction<? super V> distanceFunction,
                   int k,
                   int maxiter,
                   KMeansInitialization<? super V> initializer)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <V extends NumberVector>  | 
AbstractKMeansQualityMeasure.logLikelihood(Relation<V> relation,
             Clustering<? extends MeanModel> clustering,
             NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering. 
 | 
static <V extends NumberVector>  | 
AbstractKMeansQualityMeasure.logLikelihoodAlternate(Relation<V> relation,
                      Clustering<? extends MeanModel> clustering,
                      NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering. 
 | 
<V extends NumberVector>  | 
WithinClusterVarianceQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)  | 
<V extends NumberVector>  | 
WithinClusterMeanDistanceQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)  | 
<V extends NumberVector>  | 
BayesianInformationCriterionZhao.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)  | 
<V extends NumberVector>  | 
BayesianInformationCriterion.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)  | 
<V extends NumberVector>  | 
AkaikeInformationCriterion.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)  | 
<V extends O>  | 
KMeansQualityMeasure.quality(Clustering<? extends MeanModel> clustering,
       NumberVectorDistanceFunction<? super V> distanceFunction,
       Relation<V> relation)
Calculates and returns the quality measure. 
 | 
static <V extends NumberVector>  | 
AbstractKMeansQualityMeasure.varianceOfCluster(Cluster<? extends MeanModel> cluster,
                 NumberVectorDistanceFunction<? super V> distanceFunction,
                 Relation<V> relation)
Variance contribution of a single cluster. 
 | 
| Constructor and Description | 
|---|
CKMeans(NumberVectorDistanceFunction<? super NumberVector> distanceFunction,
       int k,
       int maxiter,
       KMeansInitialization<? super NumberVector> initializer)
Constructor that uses Lloyd's k-means algorithm. 
 | 
| Constructor and Description | 
|---|
ReferenceBasedOutlierDetection(int k,
                              NumberVectorDistanceFunction<? super NumberVector> distanceFunction,
                              ReferencePointsHeuristic refp)
Constructor with parameters. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private NumberVectorDistanceFunction<?> | 
ALOCI.Parameterizer.distanceFunction
The distance function 
 | 
private NumberVectorDistanceFunction<?> | 
ALOCI.distFunc
Distance function 
 | 
| Constructor and Description | 
|---|
ALOCI(NumberVectorDistanceFunction<?> distanceFunction,
     int nmin,
     int alpha,
     int g,
     RandomFactory rnd)
Constructor. 
 | 
| Constructor and Description | 
|---|
HopkinsStatisticClusteringTendency(NumberVectorDistanceFunction<? super NumberVector> distanceFunction,
                                  int samplesize,
                                  RandomFactory random,
                                  int rep,
                                  int k,
                                  double[] minima,
                                  double[] maxima)
Constructor. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
WeightedNumberVectorDistanceFunction<V>
Distance functions where each dimension is assigned a weight. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractNumberVectorDistanceFunction
Abstract base class for the most common family of distance functions: defined
 on number vectors and returning double values. 
 | 
class  | 
AbstractNumberVectorNorm
Abstract base class for double-valued number-vector-based distances based on
 norms. 
 | 
class  | 
AbstractSpatialDistanceFunction
Abstract base class for typical distance functions that allow
 rectangle-to-rectangle lower bounds. 
 | 
class  | 
AbstractSpatialNorm
Abstract base class for typical distance functions that allow
 rectangle-to-rectangle lower bounds. 
 | 
class  | 
ArcCosineDistanceFunction
Cosine distance function for feature vectors. 
 | 
class  | 
BrayCurtisDistanceFunction
Bray-Curtis distance function / Sørensen–Dice coefficient for continuous
 spaces. 
 | 
class  | 
CanberraDistanceFunction
Canberra distance function, a variation of Manhattan distance. 
 | 
class  | 
ClarkDistanceFunction
Clark distance function for vector spaces. 
 | 
class  | 
CosineDistanceFunction
Cosine distance function for feature vectors. 
 | 
class  | 
Kulczynski1DistanceFunction
Kulczynski similarity 1, in distance form. 
 | 
class  | 
LorentzianDistanceFunction
Lorentzian distance function for vector spaces. 
 | 
class  | 
MatrixWeightedDistanceFunction
Weighted distance for feature vectors. 
 | 
class  | 
WeightedCanberraDistanceFunction
Weighted Canberra distance function, a variation of Manhattan distance. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
HistogramIntersectionDistanceFunction
Intersection distance for color histograms. 
 | 
class  | 
HSBHistogramQuadraticDistanceFunction
Distance function for HSB color histograms based on a quadratic form and
 color similarity. 
 | 
class  | 
RGBHistogramQuadraticDistanceFunction
Distance function for RGB color histograms based on a quadratic form and
 color similarity. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbsolutePearsonCorrelationDistanceFunction
Absolute Pearson correlation distance function for feature vectors. 
 | 
class  | 
AbsoluteUncenteredCorrelationDistanceFunction
Absolute uncentered correlation distance function for feature vectors. 
 | 
class  | 
PearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors. 
 | 
class  | 
SquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors. 
 | 
class  | 
SquaredUncenteredCorrelationDistanceFunction
Squared uncentered correlation distance function for feature vectors. 
 | 
class  | 
UncenteredCorrelationDistanceFunction
Uncentered correlation distance. 
 | 
class  | 
WeightedPearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors. 
 | 
class  | 
WeightedSquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DimensionSelectingLatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form. 
 | 
class  | 
LatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form. 
 | 
class  | 
LngLatDistanceFunction
Distance function for 2D vectors in Longitude, Latitude form. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
HistogramMatchDistanceFunction
Distance function based on histogram matching, i.e. 
 | 
class  | 
KolmogorovSmirnovDistanceFunction
Distance function based on the Kolmogorov-Smirnov goodness of fit test. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
EuclideanDistanceFunction
Euclidean distance for  
NumberVectors. | 
class  | 
LPIntegerNormDistanceFunction
LP-Norm for  
NumberVectors, optimized version for integer values of p. | 
class  | 
LPNormDistanceFunction
LP-Norm for  
NumberVectors. | 
class  | 
ManhattanDistanceFunction
Manhattan distance for  
NumberVectors. | 
class  | 
MaximumDistanceFunction
Maximum distance for  
NumberVectors. | 
class  | 
MinimumDistanceFunction
Maximum distance for  
NumberVectors. | 
class  | 
SquaredEuclideanDistanceFunction
Squared Euclidean distance, optimized for  
SparseNumberVectors. | 
class  | 
WeightedEuclideanDistanceFunction
Weighted Euclidean distance for  
NumberVectors. | 
class  | 
WeightedLPNormDistanceFunction
Weighted version of the Minkowski L_p norm distance for  
NumberVector. | 
class  | 
WeightedManhattanDistanceFunction
Weighted version of the Minkowski L_p metrics distance function for
  
NumberVectors. | 
class  | 
WeightedMaximumDistanceFunction
Weighted version of the Minkowski L_p metrics distance function for
  
NumberVectors. | 
class  | 
WeightedSquaredEuclideanDistanceFunction
Squared Euclidean distance for  
NumberVectors. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ChiSquaredDistanceFunction
Chi-Squared distance function, symmetric version. 
 | 
class  | 
HellingerDistanceFunction
Hellinger kernel / Hellinger distance are used with SIFT vectors, and also
 known as Bhattacharyya distance / coefficient. 
 | 
class  | 
JeffreyDivergenceDistanceFunction
Jeffrey Divergence Distance for  
NumberVectors. | 
class  | 
JensenShannonDivergenceDistanceFunction
Jensen-Shannon Divergence is essentially the same as Jeffrey divergence, only
 scaled by half. 
 | 
class  | 
KullbackLeiblerDivergenceAsymmetricDistanceFunction
Kullback-Leibler (asymmetric!) 
 | 
class  | 
KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction
Kullback-Leibler (asymmetric!) 
 | 
class  | 
SqrtJensenShannonDivergenceDistanceFunction
The square root of Jensen-Shannon divergence is metric. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
HammingDistanceFunction
Computes the Hamming distance of arbitrary vectors - i.e. counting, on how
 many places they differ. 
 | 
class  | 
JaccardSimilarityDistanceFunction<O extends FeatureVector<?>>
A flexible extension of Jaccard similarity to non-binary vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
OnedimensionalDistanceFunction
Distance function that computes the distance between feature vectors as the
 absolute difference of their values in a specified dimension only. 
 | 
class  | 
SubspaceEuclideanDistanceFunction
Euclidean distance function between  
NumberVectors only in specified
 dimensions. | 
class  | 
SubspaceLPNormDistanceFunction
LP-Norm distance function between  
NumberVectors only in specified
 dimensions. | 
class  | 
SubspaceManhattanDistanceFunction
Manhattan distance function between  
NumberVectors only in specified
 dimensions. | 
class  | 
SubspaceMaximumDistanceFunction
Maximum distance function between  
NumberVectors only in specified
 dimensions. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractEditDistanceFunction
Edit Distance for FeatureVectors. 
 | 
class  | 
DerivativeDTWDistanceFunction
Derivative Dynamic Time Warping distance for numerical vectors. 
 | 
class  | 
DTWDistanceFunction
Dynamic Time Warping distance (DTW) for numerical vectors. 
 | 
class  | 
EDRDistanceFunction
Edit Distance on Real Sequence distance for numerical vectors. 
 | 
class  | 
ERPDistanceFunction
Edit Distance With Real Penalty distance for numerical vectors. 
 | 
class  | 
LCSSDistanceFunction
Longest Common Subsequence distance for numerical vectors. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private NumberVectorDistanceFunction<?> | 
EvaluateSquaredErrors.distance
Distance function to use. 
 | 
private NumberVectorDistanceFunction<?> | 
EvaluateSquaredErrors.Parameterizer.distance
Distance function to use. 
 | 
private NumberVectorDistanceFunction<?> | 
EvaluateSimplifiedSilhouette.distance
Distance function to use. 
 | 
private NumberVectorDistanceFunction<?> | 
EvaluateSimplifiedSilhouette.Parameterizer.distance
Distance function to use. 
 | 
private NumberVectorDistanceFunction<?> | 
EvaluatePBMIndex.Parameterizer.distance
Distance function to use. 
 | 
private NumberVectorDistanceFunction<?> | 
EvaluateDaviesBouldin.Parameterizer.distance
Distance function to use. 
 | 
private NumberVectorDistanceFunction<?> | 
EvaluatePBMIndex.distanceFunction
Distance function to use. 
 | 
private NumberVectorDistanceFunction<?> | 
EvaluateDaviesBouldin.distanceFunction
Distance function to use. 
 | 
| Constructor and Description | 
|---|
EvaluateDaviesBouldin(NumberVectorDistanceFunction<?> distance,
                     NoiseHandling noiseOpt)
Constructor. 
 | 
EvaluatePBMIndex(NumberVectorDistanceFunction<?> distance,
                NoiseHandling noiseOpt)
Constructor. 
 | 
EvaluateSimplifiedSilhouette(NumberVectorDistanceFunction<?> distance,
                            NoiseHandling noiseOpt,
                            boolean penalize)
Constructor. 
 | 
EvaluateSquaredErrors(NumberVectorDistanceFunction<?> distance,
                     NoiseHandling noiseOption)
Constructor. 
 | 
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.