See: Description
Interface | Description |
---|---|
OutlierScalingFunction |
Interface for scaling functions used by Outlier evaluation such as Histograms
and visualization.
|
Class | Description |
---|---|
COPOutlierScaling |
CDF based outlier score scaling.
|
COPOutlierScaling.Parameterizer |
Parameterization class.
|
HeDESNormalizationOutlierScaling |
Normalization used by HeDES
|
LogRankingPseudoOutlierScaling |
This is a pseudo outlier scoring obtained by only considering the ranks of
the objects.
|
MinusLogGammaScaling |
Scaling that can map arbitrary values to a probability in the range of [0:1],
by assuming a Gamma distribution on the data and evaluating the Gamma CDF.
|
MinusLogGammaScaling.Parameterizer |
Parameterization class.
|
MinusLogStandardDeviationScaling |
Scaling that can map arbitrary values to a probability in the range of [0:1].
|
MinusLogStandardDeviationScaling.Parameterizer |
Parameterization class.
|
MixtureModelOutlierScalingFunction |
Tries to fit a mixture model (exponential for inliers and gaussian for
outliers) to the outlier score distribution.
|
MultiplicativeInverseScaling |
Scaling function to invert values basically by computing 1/x, but in a variation
that maps the values to the [0:1] interval and avoiding division by 0.
|
OutlierGammaScaling |
Scaling that can map arbitrary values to a probability in the range of [0:1]
by assuming a Gamma distribution on the values.
|
OutlierGammaScaling.Parameterizer |
Parameterization class.
|
OutlierLinearScaling |
Scaling that can map arbitrary values to a value in the range of [0:1].
|
OutlierLinearScaling.Parameterizer |
Parameterization class.
|
OutlierMinusLogScaling |
Scaling function to invert values by computing -1 * Math.log(x)
Useful for example for scaling
ABOD , but see
MinusLogStandardDeviationScaling and MinusLogGammaScaling for
more advanced scalings for this algorithm. |
OutlierSqrtScaling |
Scaling that can map arbitrary positive values to a value in the range of
[0:1].
|
OutlierSqrtScaling.Parameterizer |
Parameterization class.
|
RankingPseudoOutlierScaling |
This is a pseudo outlier scoring obtained by only considering the ranks of
the objects.
|
SigmoidOutlierScalingFunction |
Tries to fit a sigmoid to the outlier scores and use it to convert the values
to probability estimates in the range of 0.0 to 1.0
Reference:
J.
|
SqrtStandardDeviationScaling |
Scaling that can map arbitrary values to a probability in the range of [0:1].
|
SqrtStandardDeviationScaling.Parameterizer |
Parameterization class.
|
StandardDeviationScaling |
Scaling that can map arbitrary values to a probability in the range of [0:1].
|
StandardDeviationScaling.Parameterizer |
Parameterization class.
|
TopKOutlierScaling |
Outlier scaling function that only keeps the top k outliers.
|
TopKOutlierScaling.Parameterizer |
Parameterization class.
|
Scaling of Outlier scores, that require a statistical analysis of the occurring values
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.