
@Reference(authors="J. Gao, P.-N. Tan", title="Converting Output Scores from Outlier Detection Algorithms into Probability Estimates", booktitle="Proc. Sixth International Conference on Data Mining, 2006. ICDM\'06.", url="http://dx.doi.org/10.1109/ICDM.2006.43") public class MixtureModelOutlierScalingFunction extends Object implements OutlierScalingFunction
J. Gao, P.-N. Tan
Converting Output Scores from Outlier Detection Algorithms into Probability
Estimates
Proc. Sixth International Conference on Data Mining, 2006. ICDM'06.
| Modifier and Type | Field and Description |
|---|---|
protected double |
alpha
Mixing parameter alpha
|
private static double |
DELTA
Convergence parameter
|
protected double |
lambda
Parameter lambda of the exponential distribution (inliers)
|
private static Logging |
LOG
The logger for this class.
|
protected double |
mu
Parameter mu of the gaussian distribution (outliers)
|
static double |
ONEBYSQRT2PI
Precomputed static value
|
protected double |
sigma
Parameter sigma of the gaussian distribution (outliers)
|
| Constructor and Description |
|---|
MixtureModelOutlierScalingFunction() |
| Modifier and Type | Method and Description |
|---|---|
protected static double |
calcP_i(double f,
double mu,
double sigma)
Compute p_i (Gaussian distribution, outliers)
|
protected static double |
calcPosterior(double f,
double alpha,
double mu,
double sigma,
double lambda)
Compute the a posterior probability for the given parameters.
|
protected static double |
calcQ_i(double f,
double lambda)
Compute q_i (Exponential distribution, inliers)
|
double |
getMax()
Get maximum resulting value.
|
double |
getMin()
Get minimum resulting value.
|
double |
getScaled(double value)
Transform a given value using the scaling function.
|
<A> void |
prepare(A array,
NumberArrayAdapter<?,A> adapter)
Prepare is called once for each data set, before getScaled() will be
called.
|
void |
prepare(OutlierResult or)
Prepare is called once for each data set, before getScaled() will be
called.
|
private static final Logging LOG
protected double mu
protected double sigma
protected double lambda
protected double alpha
public static final double ONEBYSQRT2PI
private static final double DELTA
protected static double calcP_i(double f,
double mu,
double sigma)
f - valuemu - Mu parametersigma - Sigma parameterprotected static double calcQ_i(double f,
double lambda)
f - valuelambda - Lambda parameterprotected static double calcPosterior(double f,
double alpha,
double mu,
double sigma,
double lambda)
f - valuealpha - Alpha (mixing) parametermu - Mu (for gaussian)sigma - Sigma (for gaussian)lambda - Lambda (for exponential)public void prepare(OutlierResult or)
OutlierScalingFunctionprepare in interface OutlierScalingFunctionor - Outlier result to usepublic <A> void prepare(A array,
NumberArrayAdapter<?,A> adapter)
OutlierScalingFunctionOutlierResult is preferred, as it will
allow access to the metadata.prepare in interface OutlierScalingFunctionarray - Data to processadapter - Array adapterpublic double getMax()
ScalingFunctionDouble.NaN or
Double.POSITIVE_INFINITY.getMax in interface ScalingFunctionpublic double getMin()
ScalingFunctionDouble.NaN or
Double.NEGATIVE_INFINITY.getMin in interface ScalingFunctionpublic double getScaled(double value)
ScalingFunctiongetScaled in interface ScalingFunctionvalue - Original valueCopyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.