@Reference(authors="H.-P. Kriegel, P. Kr\u00f6ger, E. Schubert, A. Zimek", title="Interpreting and Unifying Outlier Scores", booktitle="Proc. 11th SIAM International Conference on Data Mining (SDM), Mesa, AZ, 2011", url="http://dx.doi.org/10.1137/1.9781611972818.2") public class OutlierGammaScaling extends Object implements OutlierScalingFunction
H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek
Interpreting and Unifying Outlier Scores
Proc. 11th SIAM International Conference on Data Mining (SDM), Mesa, AZ, 2011
Modifier and Type | Class and Description |
---|---|
static class |
OutlierGammaScaling.Parameterizer
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
(package private) double |
atmean
Score at the mean, for cut-off.
|
(package private) double |
k
Gamma parameter k
|
(package private) OutlierScoreMeta |
meta
Keep a reference to the outlier score meta, for normalization.
|
(package private) boolean |
normalize
Store flag to Normalize data before curve fitting.
|
static OptionID |
NORMALIZE_ID
Normalization flag.
|
(package private) double |
theta
Gamma parameter theta
|
Constructor and Description |
---|
OutlierGammaScaling(boolean normalize)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
double |
getMax()
Get maximum resulting value.
|
double |
getMin()
Get minimum resulting value.
|
double |
getScaled(double value)
Transform a given value using the scaling function.
|
<A> void |
prepare(A array,
NumberArrayAdapter<?,A> adapter)
Prepare is called once for each data set, before getScaled() will be
called.
|
void |
prepare(OutlierResult or)
Prepare is called once for each data set, before getScaled() will be
called.
|
protected double |
preScale(double score)
Normalize data if necessary.
|
public static final OptionID NORMALIZE_ID
-gammascale.normalize
double k
double theta
double atmean
boolean normalize
OutlierScoreMeta meta
public OutlierGammaScaling(boolean normalize)
normalize
- Normalization flagpublic double getScaled(double value)
ScalingFunction
getScaled
in interface ScalingFunction
value
- Original valuepublic void prepare(OutlierResult or)
OutlierScalingFunction
prepare
in interface OutlierScalingFunction
or
- Outlier result to usepublic <A> void prepare(A array, NumberArrayAdapter<?,A> adapter)
OutlierScalingFunction
OutlierResult
is preferred, as it will
allow access to the metadata.prepare
in interface OutlierScalingFunction
array
- Data to processadapter
- Array adapterprotected double preScale(double score)
MinusLogGammaScaling
!score
- Original scorepublic double getMin()
ScalingFunction
Double.NaN
or
Double.NEGATIVE_INFINITY
.getMin
in interface ScalingFunction
public double getMax()
ScalingFunction
Double.NaN
or
Double.POSITIVE_INFINITY
.getMax
in interface ScalingFunction
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.