@Reference(authors="H.-P. Kriegel, P. Kr\u00f6ger, E. Schubert, A. Zimek", title="Interpreting and Unifying Outlier Scores", booktitle="Proc. 11th SIAM International Conference on Data Mining (SDM), Mesa, AZ, 2011", url="http://dx.doi.org/10.1137/1.9781611972818.2") public class MinusLogGammaScaling extends OutlierGammaScaling
H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek
Interpreting and Unifying Outlier Scores
Proc. 11th SIAM International Conference on Data Mining (SDM), Mesa, AZ, 2011
Modifier and Type | Class and Description |
---|---|
static class |
MinusLogGammaScaling.Parameterizer
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
(package private) double |
max
Maximum value seen
|
(package private) double |
mlogmax
Minimum value (after log step, so maximum again)
|
atmean, k, meta, normalize, NORMALIZE_ID, theta
Constructor and Description |
---|
MinusLogGammaScaling()
Constructor.
|
Modifier and Type | Method and Description |
---|---|
void |
prepare(OutlierResult or)
Prepare is called once for each data set, before getScaled() will be
called.
|
protected double |
preScale(double score)
Normalize data if necessary.
|
getMax, getMin, getScaled, prepare
double max
double mlogmax
protected double preScale(double score)
OutlierGammaScaling
MinusLogGammaScaling
!preScale
in class OutlierGammaScaling
score
- Original scorepublic void prepare(OutlierResult or)
OutlierScalingFunction
prepare
in interface OutlierScalingFunction
prepare
in class OutlierGammaScaling
or
- Outlier result to useCopyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.