Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering |
Biclustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction |
Extraction of partitional clusterings from hierarchical results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization |
Initialization strategies for k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality |
Quality measures for k-Means results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.cluster |
Similarity measures for comparing clusters.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.internal |
Internal evaluation measures for clusterings.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.pairsegments |
Pair-segment analysis of multiple clusterings.
|
de.lmu.ifi.dbs.elki.evaluation.scores |
Evaluation of rankings and scorings.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.result.textwriter |
Text serialization (CSV, Gnuplot, Console, ...)
|
de.lmu.ifi.dbs.elki.result.textwriter.naming |
Naming schemes for clusters (for output when an algorithm doesn't generate cluster names).
|
de.lmu.ifi.dbs.elki.visualization.style |
Style management for ELKI visualizations.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.optics |
Visualizers that do work on OPTICS plots
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster |
Visualizers for clustering results based on 2D projections.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj |
Visualizers that do not use a particular projection.
|
Modifier and Type | Method and Description |
---|---|
protected Cluster<BiclusterModel> |
AbstractBiclustering.defineBicluster(BitSet rows,
BitSet cols)
Defines a Bicluster as given by the included rows and columns.
|
protected Cluster<BiclusterModel> |
AbstractBiclustering.defineBicluster(long[] rows,
long[] cols)
Defines a Bicluster as given by the included rows and columns.
|
Modifier and Type | Method and Description |
---|---|
private List<List<Cluster<CorrelationModel<V>>>> |
ERiC.extractCorrelationClusters(Clustering<Model> dbscanResult,
Relation<V> database,
int dimensionality,
ERiCNeighborPredicate.Instance npred)
Extracts the correlation clusters and noise from the copac result and
returns a mapping of correlation dimension to maps of clusters within this
correlation dimension.
|
Modifier and Type | Method and Description |
---|---|
private boolean |
ERiC.isParent(ERiCNeighborPredicate.Instance npred,
Cluster<CorrelationModel<V>> parent,
Hierarchy.Iter<Cluster<CorrelationModel<V>>> iter)
Returns true, if the specified parent cluster is a parent of one child of
the children clusters.
|
Modifier and Type | Method and Description |
---|---|
private void |
ERiC.buildHierarchy(Clustering<CorrelationModel<V>> clustering,
List<List<Cluster<CorrelationModel<V>>>> clusterMap,
ERiCNeighborPredicate.Instance npred) |
private boolean |
ERiC.isParent(ERiCNeighborPredicate.Instance npred,
Cluster<CorrelationModel<V>> parent,
Hierarchy.Iter<Cluster<CorrelationModel<V>>> iter)
Returns true, if the specified parent cluster is a parent of one child of
the children clusters.
|
Modifier and Type | Field and Description |
---|---|
protected Collection<Cluster<DendrogramModel>> |
SimplifiedHierarchyExtraction.TempCluster.children
(Finished) child clusters
|
Modifier and Type | Method and Description |
---|---|
private Cluster<DendrogramModel> |
ExtractFlatClusteringFromHierarchy.makeCluster(DBIDRef lead,
double depth,
DBIDs members)
Make the cluster for the given object
|
private Cluster<DendrogramModel> |
SimplifiedHierarchyExtraction.makeSingletonCluster(DBIDRef lead,
double depth)
Make the cluster for the given object
|
private Cluster<DendrogramModel> |
SimplifiedHierarchyExtraction.TempCluster.toCluster(Clustering<DendrogramModel> clustering,
DBIDRef lead)
Make the cluster for the given object
|
Modifier and Type | Method and Description |
---|---|
void |
SimplifiedHierarchyExtraction.TempCluster.addChild(Cluster<DendrogramModel> clu)
Add a child cluster.
|
private void |
HDBSCANHierarchyExtraction.TempCluster.collectChildren(Clustering<DendrogramModel> clustering,
HDBSCANHierarchyExtraction.TempCluster cur,
Cluster<DendrogramModel> clus,
boolean flatten,
boolean hierarchical)
Recursive flattening of clusters.
|
private void |
HDBSCANHierarchyExtraction.TempCluster.finalizeCluster(Clustering<DendrogramModel> clustering,
Cluster<DendrogramModel> parent,
boolean flatten,
boolean hierarchical)
Make the cluster for the given object
|
Modifier and Type | Method and Description |
---|---|
protected List<Cluster<M>> |
XMeans.splitCluster(Cluster<M> parentCluster,
Database database,
Relation<V> relation)
Conditionally splits the clusters based on the information criterion.
|
Modifier and Type | Method and Description |
---|---|
protected List<? extends NumberVector> |
XMeans.splitCentroid(Cluster<? extends MeanModel> parentCluster,
Relation<V> relation)
Split an existing centroid into two initial centers.
|
protected List<Cluster<M>> |
XMeans.splitCluster(Cluster<M> parentCluster,
Database database,
Relation<V> relation)
Conditionally splits the clusters based on the information criterion.
|
Modifier and Type | Method and Description |
---|---|
void |
PredefinedInitialMeans.setInitialClusters(List<? extends Cluster<? extends MeanModel>> initialMeans)
Set the initial means.
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector> |
AbstractKMeansQualityMeasure.varianceOfCluster(Cluster<? extends MeanModel> cluster,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation)
Variance contribution of a single cluster.
|
Modifier and Type | Method and Description |
---|---|
private Cluster<SubspaceModel> |
DOC.makeCluster(Relation<V> relation,
DBIDs C,
long[] D)
Utility method to create a subspace cluster from a list of DBIDs and the
relevant attributes.
|
private Cluster<SubspaceModel> |
DOC.runDOC(Database database,
Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r,
int minClusterSize)
Performs a single run of DOC, finding a single cluster.
|
private Cluster<SubspaceModel> |
DOC.runFastDOC(Database database,
Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r)
Performs a single run of FastDOC, finding a single cluster.
|
Modifier and Type | Method and Description |
---|---|
private List<Cluster<Model>> |
SUBCLU.runDBSCAN(Relation<V> relation,
DBIDs ids,
Subspace subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the
given subspace.
|
private List<Cluster<SubspaceModel>> |
DiSH.sortClusters(Relation<V> relation,
TCustomHashMap<long[],List<ArrayModifiableDBIDs>> clustersMap)
Returns a sorted list of the clusters w.r.t. the subspace dimensionality in
descending order.
|
Modifier and Type | Method and Description |
---|---|
private boolean |
DiSH.isParent(Relation<V> relation,
Cluster<SubspaceModel> parent,
Hierarchy.Iter<Cluster<SubspaceModel>> iter,
int db_dim)
Returns true, if the specified parent cluster is a parent of one child of
the children clusters.
|
Modifier and Type | Method and Description |
---|---|
private Subspace |
SUBCLU.bestSubspace(List<Subspace> subspaces,
Subspace candidate,
TreeMap<Subspace,List<Cluster<Model>>> clusterMap)
Determines the
d -dimensional subspace of the (d+1)
-dimensional candidate with minimal number of objects in the cluster. |
private void |
DiSH.buildHierarchy(Relation<V> database,
Clustering<SubspaceModel> clustering,
List<Cluster<SubspaceModel>> clusters,
int dimensionality)
Builds the cluster hierarchy.
|
private boolean |
DiSH.isParent(Relation<V> relation,
Cluster<SubspaceModel> parent,
Hierarchy.Iter<Cluster<SubspaceModel>> iter,
int db_dim)
Returns true, if the specified parent cluster is a parent of one child of
the children clusters.
|
Modifier and Type | Field and Description |
---|---|
static Comparator<Cluster<?>> |
Cluster.BY_NAME_SORTER
A partial comparator for Clusters, based on their name.
|
private ModifiableHierarchy<Cluster<M>> |
Clustering.hierarchy
Cluster hierarchy.
|
private List<Cluster<M>> |
Clustering.toplevelclusters
Keep a list of top level clusters.
|
Modifier and Type | Method and Description |
---|---|
List<Cluster<M>> |
Clustering.getAllClusters()
Collect all clusters (recursively) into a List.
|
Hierarchy<Cluster<M>> |
Clustering.getClusterHierarchy()
Get the cluster hierarchy.
|
List<Cluster<M>> |
Clustering.getToplevelClusters()
Return top level clusters
|
Hierarchy.Iter<Cluster<M>> |
Clustering.iterToplevelClusters()
Iterate over the top level clusters.
|
Modifier and Type | Method and Description |
---|---|
void |
Clustering.addChildCluster(Cluster<M> parent,
Cluster<M> child)
Add a cluster to the clustering.
|
void |
Clustering.addChildCluster(Cluster<M> parent,
Cluster<M> child)
Add a cluster to the clustering.
|
void |
Clustering.addToplevelCluster(Cluster<M> clus)
Add a cluster to the clustering.
|
Constructor and Description |
---|
Clustering(String name,
String shortname,
List<Cluster<M>> toplevelclusters)
Constructor with a list of top level clusters
|
Modifier and Type | Method and Description |
---|---|
<T extends Cluster<?>> |
ClusterJaccardSimilarityFunction.instantiate(Relation<T> relation) |
<T extends Cluster<?>> |
ClusterIntersectionSimilarityFunction.instantiate(Relation<T> relation) |
Modifier and Type | Method and Description |
---|---|
SimpleTypeInformation<? super Cluster<?>> |
ClusterJaccardSimilarityFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super Cluster<?>> |
ClusterIntersectionSimilarityFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
double |
ClusterJaccardSimilarityFunction.distance(Cluster<?> o1,
Cluster<?> o2) |
double |
ClusterJaccardSimilarityFunction.distance(Cluster<?> o1,
Cluster<?> o2) |
double |
ClusterIntersectionSimilarityFunction.distance(Cluster<?> o1,
Cluster<?> o2) |
double |
ClusterIntersectionSimilarityFunction.distance(Cluster<?> o1,
Cluster<?> o2) |
double |
ClusterJaccardSimilarityFunction.similarity(Cluster<?> o1,
Cluster<?> o2) |
double |
ClusterJaccardSimilarityFunction.similarity(Cluster<?> o1,
Cluster<?> o2) |
double |
ClusterIntersectionSimilarityFunction.similarity(Cluster<?> o1,
Cluster<?> o2) |
double |
ClusterIntersectionSimilarityFunction.similarity(Cluster<?> o1,
Cluster<?> o2) |
Modifier and Type | Method and Description |
---|---|
static int |
EvaluateSimplifiedSilhouette.centroids(Relation<? extends NumberVector> rel,
List<? extends Cluster<?>> clusters,
NumberVector[] centroids,
NoiseHandling noiseOption)
Compute centroids.
|
protected double[] |
EvaluateConcordantPairs.computeWithinDistances(Relation<? extends NumberVector> rel,
List<? extends Cluster<?>> clusters,
int withinPairs) |
static int |
EvaluateVarianceRatioCriteria.globalCentroid(Centroid overallCentroid,
Relation<? extends NumberVector> rel,
List<? extends Cluster<?>> clusters,
NumberVector[] centroids,
NoiseHandling noiseOption)
Update the global centroid.
|
double[] |
EvaluateDaviesBouldin.withinGroupDistances(Relation<? extends NumberVector> rel,
List<? extends Cluster<?>> clusters,
NumberVector[] centroids) |
Modifier and Type | Field and Description |
---|---|
private List<List<? extends Cluster<?>>> |
Segments.clusters
Clusters
|
Modifier and Type | Method and Description |
---|---|
private void |
Segments.recursivelyFill(List<List<? extends Cluster<?>>> cs) |
private void |
Segments.recursivelyFill(List<List<? extends Cluster<?>>> cs,
int depth,
SetDBIDs first,
SetDBIDs second,
int[] path,
boolean objectsegment) |
Modifier and Type | Method and Description |
---|---|
double |
ScoreEvaluation.evaluate(Cluster<?> clus,
DoubleDBIDList nei)
Evaluate given a cluster (of positive elements) and a scoring list.
|
double |
AbstractScoreEvaluation.evaluate(Cluster<?> clus,
DoubleDBIDList nei) |
Modifier and Type | Method and Description |
---|---|
private DoubleObjPair<Polygon> |
KMLOutputHandler.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls,
Relation<? extends NumberVector> coords)
Recursively step through the clusters to build the hulls.
|
private StringBuilder |
KMLOutputHandler.makeDescription(Cluster<?> c)
Make an HTML description.
|
Modifier and Type | Method and Description |
---|---|
private DoubleObjPair<Polygon> |
KMLOutputHandler.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls,
Relation<? extends NumberVector> coords)
Recursively step through the clusters to build the hulls.
|
Modifier and Type | Method and Description |
---|---|
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Clustering<Model> clustering,
Cluster<Model> clus,
List<Relation<?>> ra,
NamingScheme naming) |
Modifier and Type | Field and Description |
---|---|
private Map<Cluster<?>,String> |
SimpleEnumeratingScheme.names
Assigned cluster names.
|
Modifier and Type | Method and Description |
---|---|
String |
SimpleEnumeratingScheme.getNameFor(Cluster<?> cluster)
Retrieve the cluster name.
|
String |
NamingScheme.getNameFor(Cluster<?> cluster)
Retrieve a name for the given cluster.
|
Modifier and Type | Field and Description |
---|---|
(package private) TObjectIntMap<Cluster<?>> |
ClusterStylingPolicy.cmap
Map from cluster objects to color offsets.
|
Modifier and Type | Method and Description |
---|---|
int |
ClusterStylingPolicy.getStyleForCluster(Cluster<?> c)
Get the style number for a cluster.
|
Modifier and Type | Method and Description |
---|---|
private void |
OPTICSClusterVisualization.Instance.drawClusters(Clustering<OPTICSModel> clustering,
Hierarchy.Iter<Cluster<OPTICSModel>> clusters,
int depth,
Map<Cluster<?>,String> colormap)
Recursively draw clusters
|
private void |
OPTICSClusterVisualization.Instance.drawClusters(Clustering<OPTICSModel> clustering,
Hierarchy.Iter<Cluster<OPTICSModel>> clusters,
int depth,
Map<Cluster<?>,String> colormap)
Recursively draw clusters
|
Modifier and Type | Method and Description |
---|---|
private double |
ClusterHullVisualization.Instance.addRecursively(ArrayList<Vector> hull,
Hierarchy<Cluster<Model>> hier,
Cluster<Model> clus)
Recursively add a cluster and its children.
|
private DoubleObjPair<Polygon> |
ClusterHullVisualization.Instance.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls)
Recursively step through the clusters to build the hulls.
|
Modifier and Type | Method and Description |
---|---|
private double |
ClusterHullVisualization.Instance.addRecursively(ArrayList<Vector> hull,
Hierarchy<Cluster<Model>> hier,
Cluster<Model> clus)
Recursively add a cluster and its children.
|
private DoubleObjPair<Polygon> |
ClusterHullVisualization.Instance.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls)
Recursively step through the clusters to build the hulls.
|
Modifier and Type | Method and Description |
---|---|
private double |
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
MarkerLibrary ml,
DoubleDoublePair size,
DoubleDoublePair pos,
int depth,
Cluster<Model> cluster,
TObjectIntMap<Cluster<Model>> cnum,
Hierarchy<Cluster<Model>> hier) |
private static <M extends Model> |
KeyVisualization.findDepth(Hierarchy<Cluster<M>> hier,
Cluster<M> cluster,
int[] size)
Recursive depth computation.
|
Modifier and Type | Method and Description |
---|---|
private double |
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
MarkerLibrary ml,
DoubleDoublePair size,
DoubleDoublePair pos,
int depth,
Cluster<Model> cluster,
TObjectIntMap<Cluster<Model>> cnum,
Hierarchy<Cluster<Model>> hier) |
private double |
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
MarkerLibrary ml,
DoubleDoublePair size,
DoubleDoublePair pos,
int depth,
Cluster<Model> cluster,
TObjectIntMap<Cluster<Model>> cnum,
Hierarchy<Cluster<Model>> hier) |
private static <M extends Model> |
KeyVisualization.findDepth(Hierarchy<Cluster<M>> hier,
Cluster<M> cluster,
int[] size)
Recursive depth computation.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.