@Reference(authors="D. Pelleg, A. Moore", booktitle="X-means: Extending K-means with Efficient Estimation on the Number of Clusters", title="Proceedings of the 17th International Conference on Machine Learning (ICML 2000)", url="http://www.pelleg.org/shared/hp/download/xmeans.ps") public abstract class AbstractKMeansQualityMeasure<O extends NumberVector> extends Object implements KMeansQualityMeasure<O>
D. Pelleg, A. Moore:
X-means: Extending K-means with Efficient Estimation on the Number of
Clusters
In: Proceedings of the 17th International Conference on Machine Learning
(ICML 2000)
Q. Zhao, M. Xu, P. Fränti:
Knee Point Detection on Bayesian Information Criterion
20th IEEE International Conference on Tools with Artificial Intelligence
Constructor and Description |
---|
AbstractKMeansQualityMeasure() |
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector> |
logLikelihood(Relation<V> relation,
Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering.
|
static <V extends NumberVector> |
logLikelihoodAlternate(Relation<V> relation,
Clustering<? extends MeanModel> clustering,
NumberVectorDistanceFunction<? super V> distanceFunction)
Computes log likelihood of an entire clustering.
|
static int |
numberOfFreeParameters(Relation<? extends NumberVector> relation,
Clustering<? extends MeanModel> clustering)
Compute the number of free parameters.
|
static int |
numPoints(Clustering<? extends MeanModel> clustering)
Compute the number of points in a given set of clusters (which may be
less than the complete data set for X-means!)
|
static <V extends NumberVector> |
varianceOfCluster(Cluster<? extends MeanModel> cluster,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation)
Variance contribution of a single cluster.
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
ascending, isBetter, quality
public static int numPoints(Clustering<? extends MeanModel> clustering)
clustering
- Clustering to analyzepublic static <V extends NumberVector> double varianceOfCluster(Cluster<? extends MeanModel> cluster, NumberVectorDistanceFunction<? super V> distanceFunction, Relation<V> relation)
V
- Vector typecluster
- Cluster to accessdistanceFunction
- Distance functionrelation
- Data relation@Reference(authors="D. Pelleg, A. Moore", booktitle="X-means: Extending K-means with Efficient Estimation on the Number of Clusters", title="Proceedings of the 17th International Conference on Machine Learning (ICML 2000)", url="http://www.pelleg.org/shared/hp/download/xmeans.ps") public static <V extends NumberVector> double logLikelihood(Relation<V> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistanceFunction<? super V> distanceFunction)
V
- Vector typerelation
- Data relationclustering
- ClusteringdistanceFunction
- Distance function@Reference(authors="Q. Zhao, M. Xu, P. Fra\u0308nti", title="Knee Point Detection on Bayesian Information Criterion", booktitle="20th IEEE International Conference on Tools with Artificial Intelligence", url="http://dx.doi.org/10.1109/ICTAI.2008.154") public static <V extends NumberVector> double logLikelihoodAlternate(Relation<V> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistanceFunction<? super V> distanceFunction)
V
- Vector typerelation
- Data relationclustering
- ClusteringdistanceFunction
- Distance functionpublic static int numberOfFreeParameters(Relation<? extends NumberVector> relation, Clustering<? extends MeanModel> clustering)
relation
- Data relation (for dimensionality)clustering
- Set of clustersCopyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.