Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.em |
Expectation-Maximization clustering algorithm.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization |
Initialization strategies for k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.parallel |
Parallelized implementations of k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain |
Clustering algorithms for uncertain data.
|
de.lmu.ifi.dbs.elki.index.idistance |
iDistance is a distance based indexing technique, using a reference points embedding.
|
Class and Description |
---|
KMeansInitialization
Interface for initializing K-Means
|
Class and Description |
---|
KMeansInitialization
Interface for initializing K-Means
|
KMedoidsInitialization
Interface for initializing K-Medoids.
|
PredefinedInitialMeans
Run k-means with prespecified initial means.
|
Class and Description |
---|
AbstractKMeansInitialization
Abstract base class for common k-means initializations.
|
AbstractKMeansInitialization.Parameterizer
Parameterization class.
|
FarthestPointsInitialMeans
K-Means initialization by repeatedly choosing the farthest point (by the
minimum distance to earlier points).
|
FarthestPointsInitialMeans.Parameterizer
Parameterization class.
|
FarthestSumPointsInitialMeans
K-Means initialization by repeatedly choosing the farthest point (by the
sum of distances to previous objects).
|
FirstKInitialMeans
Initialize K-means by using the first k objects as initial means.
|
KMeansInitialization
Interface for initializing K-Means
|
KMeansPlusPlusInitialMeans
K-Means++ initialization for k-means.
|
KMedoidsInitialization
Interface for initializing K-Medoids.
|
PAMInitialMeans
PAM initialization for k-means (and of course, PAM).
|
PredefinedInitialMeans
Run k-means with prespecified initial means.
|
RandomlyChosenInitialMeans
Initialize K-means by randomly choosing k existing elements as cluster
centers.
|
RandomlyGeneratedInitialMeans
Initialize k-means by generating random vectors (within the data sets value
range).
|
SampleKMeansInitialization
Initialize k-means by running k-means on a sample of the data set only.
|
Class and Description |
---|
KMeansInitialization
Interface for initializing K-Means
|
Class and Description |
---|
KMeansInitialization
Interface for initializing K-Means
|
Class and Description |
---|
KMedoidsInitialization
Interface for initializing K-Medoids.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.