Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering |
Biclustering algorithms.
|
de.lmu.ifi.dbs.elki.data.synthetic.bymodel |
Generator using a distribution model specified in an XML configuration file.
|
de.lmu.ifi.dbs.elki.datasource.filter |
Data filtering, in particular for normalization and projection.
|
de.lmu.ifi.dbs.elki.datasource.filter.normalization |
Data normalization.
|
de.lmu.ifi.dbs.elki.math.statistics.distribution |
Standard distributions, with random generation functionalities.
|
de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator |
Estimators for statistical distributions.
|
de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta |
Meta estimators: estimators that do not actually estimate themselves, but instead use other estimators, e.g. on a trimmed data set, or as an ensemble.
|
de.lmu.ifi.dbs.elki.utilities.scaling.outlier |
Scaling of Outlier scores, that require a statistical analysis of the occurring values
|
Modifier and Type | Field and Description |
---|---|
private Distribution |
ChengAndChurch.dist
Distribution to sample random replacement values from.
|
private Distribution |
ChengAndChurch.Parameterizer.dist
Distribution of replacement values.
|
Modifier and Type | Method and Description |
---|---|
protected void |
ChengAndChurch.BiclusterCandidate.maskMatrix(double[][] mat,
Distribution replacement)
Updates the mask with replacement values for all data in the given rows
and columns.
|
Constructor and Description |
---|
ChengAndChurch(double delta,
double alpha,
int n,
Distribution dist)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private List<Distribution> |
GeneratorSingleCluster.axes
The distribution generators for each axis
|
Modifier and Type | Method and Description |
---|---|
Distribution |
GeneratorSingleCluster.getDistribution(int i)
Get distribution along (generator) axis i.
|
Modifier and Type | Method and Description |
---|---|
void |
GeneratorSingleCluster.addGenerator(Distribution gen)
Add a new generator to the cluster.
|
Modifier and Type | Field and Description |
---|---|
private Distribution |
ReplaceNaNWithRandomFilter.dist
Distribution to generate replacement values with.
|
private Distribution |
ReplaceNaNWithRandomFilter.Parameterizer.dist
Distribution to generate replacement values with.
|
Constructor and Description |
---|
ReplaceNaNWithRandomFilter(Distribution dist)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private List<Distribution> |
AttributeWiseCDFNormalization.dists
Stores the estimated distributions
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDistribution
Abstract base class for distributions.
|
class |
BetaDistribution
Beta Distribution with implementation of the regularized incomplete beta
function
|
class |
CauchyDistribution
Cauchy distribution.
|
class |
ChiDistribution
Chi distribution.
|
class |
ChiSquaredDistribution
Chi-Squared distribution (a specialization of the Gamma distribution).
|
class |
ConstantDistribution
Pseudo distribution, that has a unique constant value.
|
class |
ExponentialDistribution
Exponential distribution.
|
class |
ExponentiallyModifiedGaussianDistribution
Exponentially modified Gaussian (EMG) distribution (ExGaussian distribution)
is a combination of a normal distribution and an exponential distribution.
|
class |
GammaDistribution
Gamma Distribution, with random generation and density functions.
|
class |
GeneralizedExtremeValueDistribution
Generalized Extreme Value (GEV) distribution, also known as Fisher–Tippett
distribution.
|
class |
GeneralizedLogisticAlternateDistribution
Generalized logistic distribution.
|
class |
GeneralizedLogisticDistribution
Generalized logistic distribution.
|
class |
GumbelDistribution
Gumbel distribution, also known as Log-Weibull distribution.
|
class |
HaltonUniformDistribution
Halton sequences are a pseudo-uniform distribution.
|
class |
KappaDistribution
Kappa distribution, by Hosking.
|
class |
LaplaceDistribution
Laplace distribution also known as double exponential distribution
|
class |
LogGammaAlternateDistribution
Alternate Log-Gamma Distribution, with random generation and density
functions.
|
class |
LogGammaDistribution
Log-Gamma Distribution, with random generation and density functions.
|
class |
LogisticDistribution
Logistic distribution.
|
class |
LogLogisticDistribution
Log-Logistic distribution also known as Fisk distribution.
|
class |
LogNormalDistribution
Log-Normal distribution.
|
class |
NormalDistribution
Gaussian distribution aka normal distribution
|
class |
PoissonDistribution
INCOMPLETE implementation of the poisson distribution.
|
class |
RayleighDistribution
Rayleigh distribution.
|
class |
SkewGeneralizedNormalDistribution
Generalized Gaussian distribution by adding a skew term, similar to lognormal
distributions.
|
class |
StudentsTDistribution
Student's t distribution.
|
class |
UniformDistribution
Uniform distribution.
|
class |
WaldDistribution
Inverse Gaussian distribution aka Wald distribution
|
class |
WeibullDistribution
Weibull distribution.
|
Modifier and Type | Method and Description |
---|---|
protected abstract Distribution |
AbstractDistribution.Parameterizer.makeInstance() |
Modifier and Type | Class and Description |
---|---|
class |
AbstractExpMADEstimator<D extends Distribution>
Abstract base class for estimators based on the median and MAD.
|
class |
AbstractLMMEstimator<D extends Distribution>
Abstract base class for L-Moments based estimators (LMM).
|
class |
AbstractLogMADEstimator<D extends Distribution>
Abstract base class for estimators based on the median and MAD.
|
class |
AbstractLogMeanVarianceEstimator<D extends Distribution>
Estimators that work on Mean and Variance only (i.e. the first two moments
only).
|
class |
AbstractLogMOMEstimator<D extends Distribution>
Abstract base class for estimators based on the statistical moments.
|
class |
AbstractMADEstimator<D extends Distribution>
Abstract base class for estimators based on the median and MAD.
|
class |
AbstractMeanVarianceEstimator<D extends Distribution>
Estimators that work on Mean and Variance only (i.e. the first two moments
only).
|
class |
AbstractMOMEstimator<D extends Distribution>
Abstract base class for estimators based on the statistical moments.
|
interface |
DistributionEstimator<D extends Distribution>
Estimate distribution parameters from a sample.
|
interface |
ExpMADDistributionEstimator<D extends Distribution>
Distribuition estimators that use the method of moments (MOM) in
exponentiated data.
|
interface |
LMMDistributionEstimator<D extends Distribution>
Interface for distribution estimators based on the methods of L-Moments
(LMM).
|
interface |
LogMADDistributionEstimator<D extends Distribution>
Distribuition estimators that use the method of moments (MOM) in logspace.
|
interface |
LogMOMDistributionEstimator<D extends Distribution>
Distribuition estimators that use the method of moments (MOM) in logspace,
i.e. that only need the statistical moments of a data set after logarithms.
|
interface |
MADDistributionEstimator<D extends Distribution>
Distribuition estimators that use the method of moments (MOM), i.e. that only
need the statistical moments of a data set.
|
interface |
MeanVarianceDistributionEstimator<D extends Distribution>
Interface for estimators that only need mean and variance.
|
interface |
MOMDistributionEstimator<D extends Distribution>
Distribuition estimators that use the method of moments (MOM), i.e. that only
need the statistical moments of a data set.
|
Modifier and Type | Method and Description |
---|---|
Distribution |
UniformMinMaxEstimator.estimate(double min,
double max)
Estimate parameters from minimum and maximum observed.
|
Modifier and Type | Class and Description |
---|---|
class |
TrimmedEstimator<D extends Distribution>
Trimmed wrapper around other estimators.
|
static class |
TrimmedEstimator.Parameterizer<D extends Distribution>
Parameterization class.
|
class |
WinsorisingEstimator<D extends Distribution>
Winsorising or Georgization estimator.
|
static class |
WinsorisingEstimator.Parameterizer<D extends Distribution>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
<A> Distribution |
BestFitEstimator.estimate(A data,
NumberArrayAdapter<?,A> adapter) |
Modifier and Type | Method and Description |
---|---|
Class<? super Distribution> |
BestFitEstimator.getDistributionClass() |
Modifier and Type | Method and Description |
---|---|
private double |
BestFitEstimator.testFit(double[] x,
double[] test,
Distribution dist)
Test the quality of a fit.
|
Modifier and Type | Field and Description |
---|---|
private Distribution |
COPOutlierScaling.dist
Score distribution.
|