
public class PoissonDistribution extends AbstractDistribution
 Catherine Loader
 Fast and Accurate Computation of Binomial Probabilities.
 
| Modifier and Type | Class and Description | 
|---|---|
| static class  | PoissonDistribution.ParameterizerParameterization class | 
| Modifier and Type | Field and Description | 
|---|---|
| private int | nNumber of tries | 
| private double | pSuccess probability | 
| private static double | S0Stirling error constants: 1./12 | 
| private static double | S1Stirling error constants: 1./360 | 
| private static double | S2Stirling error constants: 1./1260 | 
| private static double | S3Stirling error constants: 1./1680 | 
| private static double | S4Stirling error constants: 1./1188 | 
| private static double[] | STIRLING_EXACT_ERRORExact table values for n <= 15 in steps of 0.5
 
 sfe[n] = ln( (n! | 
random| Constructor and Description | 
|---|
| PoissonDistribution(int n,
                   double p)Constructor. | 
| PoissonDistribution(int n,
                   double p,
                   Random random)Constructor. | 
| PoissonDistribution(int n,
                   double p,
                   RandomFactory random)Constructor. | 
| Modifier and Type | Method and Description | 
|---|---|
| double | cdf(double val)Return the cumulative density function at the given value. | 
| private static double | devianceTerm(double x,
            double np)Evaluate the deviance term of the saddle point approximation. | 
| static double | logpoissonPDFm1(double x_plus_1,
               double lambda)Compute the poisson distribution PDF with an offset of + 1
 
 log pdf(x_plus_1 - 1, lambda) | 
| double | nextRandom()Generate a new random value | 
| double | pdf(double x)Return the density of an existing value | 
| static double | pmf(double x,
   int n,
   double p)Poisson probability mass function (PMF) for integer values. | 
| double | pmf(int x)Poisson probability mass function (PMF) for integer values. | 
| static double | poissonPDFm1(double x_plus_1,
            double lambda)Compute the poisson distribution PDF with an offset of + 1
 
 pdf(x_plus_1 - 1, lambda) | 
| double | quantile(double val)Quantile aka probit (for normal) aka inverse CDF (invcdf, cdf^-1) function. | 
| static double | rawLogProbability(double x,
                 double lambda)Poisson distribution probability, but also for non-integer arguments. | 
| static double | rawProbability(double x,
              double lambda)Poisson distribution probability, but also for non-integer arguments. | 
| private static double | stirlingError(double n)Calculates the Striling Error
 
 stirlerr(n) = ln(n!) | 
| private static double | stirlingError(int n)Calculates the Striling Error
 
 stirlerr(n) = ln(n!) | 
| String | toString()Describe the distribution | 
private int n
private double p
private static final double S0
private static final double S1
private static final double S2
private static final double S3
private static final double S4
private static final double[] STIRLING_EXACT_ERROR
public PoissonDistribution(int n,
                   double p)
n - Number of triesp - Success probabilitypublic PoissonDistribution(int n,
                   double p,
                   Random random)
n - Number of triesp - Success probabilityrandom - Random generatorpublic PoissonDistribution(int n,
                   double p,
                   RandomFactory random)
n - Number of triesp - Success probabilityrandom - Random generatorpublic double pmf(int x)
x - integer valuespublic double pdf(double x)
Distributionx - existing value@Reference(title="Fast and accurate computation of binomial probabilities", authors="C. Loader", booktitle="", url="http://projects.scipy.org/scipy/raw-attachment/ticket/620/loader2000Fast.pdf") public static double pmf(double x, int n, double p)
x - integer valuespublic double cdf(double val)
Distributionval - existing valuepublic double quantile(double val)
Distributionval - Quantile to findpublic double nextRandom()
DistributionnextRandom in interface DistributionnextRandom in class AbstractDistributionpublic static double poissonPDFm1(double x_plus_1,
                  double lambda)
x_plus_1 - x+1lambda - Lambdapublic static double logpoissonPDFm1(double x_plus_1,
                     double lambda)
x_plus_1 - x+1lambda - Lambda@Reference(title="Fast and accurate computation of binomial probabilities", authors="C. Loader", booktitle="", url="http://projects.scipy.org/scipy/raw-attachment/ticket/620/loader2000Fast.pdf") private static double stirlingError(int n)
n - Parameter n@Reference(title="Fast and accurate computation of binomial probabilities", authors="C. Loader", booktitle="", url="http://projects.scipy.org/scipy/raw-attachment/ticket/620/loader2000Fast.pdf") private static double stirlingError(double n)
n - Parameter n@Reference(title="Fast and accurate computation of binomial probabilities", authors="C. Loader", booktitle="", url="http://projects.scipy.org/scipy/raw-attachment/ticket/620/loader2000Fast.pdf") private static double devianceTerm(double x, double np)
x - probability density function positionnp - product of trials and success probability: n*ppublic static double rawProbability(double x,
                    double lambda)
x - Xlambda - lambdapublic static double rawLogProbability(double x,
                       double lambda)
x - Xlambda - lambdapublic String toString()
DistributiontoString in interface DistributiontoString in class Object