Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation |
Affinity Propagation (AP) clustering.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.subspace |
Subspace outlier detection methods.
|
de.lmu.ifi.dbs.elki.database |
ELKI database layer - loading, storing, indexing and accessing data
|
de.lmu.ifi.dbs.elki.database.query.similarity |
Prepared queries for similarity functions.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction |
Similarity functions.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
Kernel functions.
|
Modifier and Type | Field and Description |
---|---|
(package private) SimilarityFunction<? super O,D> |
SimilarityBasedInitializationWithMedian.similarity
Similarity function.
|
(package private) SimilarityFunction<? super O,D> |
SimilarityBasedInitializationWithMedian.Parameterizer.similarity
Similarity function.
|
Constructor and Description |
---|
SimilarityBasedInitializationWithMedian(SimilarityFunction<? super O,D> similarity,
double quantile)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected SimilarityFunction<? super V,DoubleDistance> |
ABOD.kernelFunction
Store the configured Kernel version.
|
protected SimilarityFunction<V,DoubleDistance> |
ABOD.Parameterizer.kernelFunction
Distance function.
|
Constructor and Description |
---|
ABOD(SimilarityFunction<? super V,DoubleDistance> kernelFunction)
Constructor for Angle-Based Outlier Detection (ABOD).
|
FastABOD(SimilarityFunction<? super V,DoubleDistance> kernelFunction,
int k)
Constructor for Angle-Based Outlier Detection (ABOD).
|
LBABOD(SimilarityFunction<? super V,DoubleDistance> kernelFunction,
int k,
int l)
Actual constructor, with parameters.
|
Modifier and Type | Field and Description |
---|---|
private SimilarityFunction<V,D> |
SOD.similarityFunction
Similarity function to use.
|
private SimilarityFunction<V,D> |
SOD.Parameterizer.similarityFunction
The similarity function.
|
Constructor and Description |
---|
SOD(int knn,
double alpha,
SimilarityFunction<V,D> similarityFunction,
boolean models)
Constructor with parameters.
|
Modifier and Type | Method and Description |
---|---|
static <O,D extends Distance<D>> |
QueryUtil.getSimilarityQuery(Database database,
SimilarityFunction<? super O,D> similarityFunction,
Object... hints)
Get a similarity query, automatically choosing a relation.
|
<O,D extends Distance<D>> |
Database.getSimilarityQuery(Relation<O> relation,
SimilarityFunction<? super O,D> similarityFunction,
Object... hints)
Get the similarity query for a particular similarity function.
|
<O,D extends Distance<D>> |
AbstractDatabase.getSimilarityQuery(Relation<O> objQuery,
SimilarityFunction<? super O,D> similarityFunction,
Object... hints) |
Modifier and Type | Method and Description |
---|---|
SimilarityFunction<? super O,D> |
SimilarityQuery.getSimilarityFunction()
Get the inner similarity function.
|
Modifier and Type | Interface and Description |
---|---|
interface |
DBIDSimilarityFunction<D extends Distance<D>>
Interface DBIDSimilarityFunction describes the requirements of any similarity
function defined over object IDs.
|
interface |
IndexBasedSimilarityFunction<O,D extends Distance<D>>
Interface for preprocessor/index based similarity functions.
|
interface |
NormalizedPrimitiveSimilarityFunction<O>
Marker interface for similarity functions working on primitive objects, and
limited to the 0-1 value range.
|
interface |
NormalizedSimilarityFunction<O>
Marker interface to signal that the similarity function is normalized to
produce values in the range of [0:1].
|
interface |
PrimitiveDoubleSimilarityFunction<O>
Interface for similarity functions that can provide a raw double value.
|
interface |
PrimitiveSimilarityFunction<O,D extends Distance<?>>
Interface SimilarityFunction describes the requirements of any similarity
function.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDBIDSimilarityFunction<D extends Distance<D>>
Abstract super class for distance functions needing a preprocessor.
|
class |
AbstractIndexBasedSimilarityFunction<O,I extends Index,R,D extends Distance<D>>
Abstract super class for distance functions needing a preprocessor.
|
class |
AbstractPrimitiveSimilarityFunction<O,D extends Distance<D>>
Base implementation of a similarity function.
|
class |
AbstractVectorDoubleSimilarityFunction
Abstract base class for double-valued primitive similarity functions.
|
class |
FractionalSharedNearestNeighborSimilarityFunction<O>
SharedNearestNeighborSimilarityFunction with a pattern defined to accept
Strings that define a non-negative Integer.
|
class |
InvertedDistanceSimilarityFunction<O>
Adapter to use a primitive number-distance as similarity measure, by computing
1/distance.
|
class |
JaccardPrimitiveSimilarityFunction<O extends FeatureVector<?>>
A flexible extension of Jaccard similarity to non-binary vectors.
|
class |
Kulczynski1SimilarityFunction
Kulczynski similarity 1.
|
class |
Kulczynski2SimilarityFunction
Kulczynski similarity 2.
|
class |
SharedNearestNeighborSimilarityFunction<O>
SharedNearestNeighborSimilarityFunction with a pattern defined to accept
Strings that define a non-negative Integer.
|
Modifier and Type | Method and Description |
---|---|
SimilarityFunction<? super T,DoubleDistance> |
FractionalSharedNearestNeighborSimilarityFunction.Instance.getSimilarityFunction() |
SimilarityFunction<? super O,IntegerDistance> |
SharedNearestNeighborSimilarityFunction.Instance.getSimilarityFunction() |
Modifier and Type | Class and Description |
---|---|
class |
LaplaceKernelFunction
Provides the laplace / exponential radial basis function kernel.
|
class |
LinearKernelFunction
Provides a linear Kernel function that computes a similarity between the two
feature vectors V1 and V2 defined by V1^T*V2.
|
class |
PolynomialKernelFunction
Provides a polynomial Kernel function that computes a similarity between the
two feature vectors V1 and V2 defined by (V1^T*V2)^degree.
|
class |
RadialBasisFunctionKernelFunction
Provides the Gaussian radial basis function kernel (RBF Kernel).
|
class |
RationalQuadraticKernelFunction
Provides the rational quadratic kernel, a less computational approximation of
the Gaussian RBF kerne (
RadialBasisFunctionKernelFunction ). |
class |
SigmoidKernelFunction
Sigmoid kernel function (aka: hyperbolic tangent kernel, multilayer
perceptron MLP kernel).
|