Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality |
Quality measures for k-Means results.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.cluster |
Visualizers for clustering results based on parallel coordinates.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster |
Visualizers for clustering results based on 2D projections.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
Modifier and Type | Method and Description |
---|---|
Clustering<MeanModel<V>> |
NaiveMeanShiftClustering.run(Database database,
Relation<V> relation)
Run the mean-shift clustering algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKMeans<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>>
Abstract base class for k-means implementations.
|
class |
BestOfMultipleKMeans<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>>
Run K-Means multiple times, and keep the best run.
|
static class |
BestOfMultipleKMeans.Parameterizer<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>>
Parameterization class.
|
interface |
KMeans<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>>
Some constants and options shared among kmeans family algorithms.
|
class |
KMeansBisecting<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>>
The bisecting k-means algorithm works by starting with an initial
partitioning into two clusters, then repeated splitting of the largest
cluster to get additional clusters.
|
static class |
KMeansBisecting.Parameterizer<V extends NumberVector<?>,D extends Distance<?>,M extends MeanModel<V>>
Parameterization class.
|
Modifier and Type | Method and Description |
---|---|
Clustering<MeanModel<V>> |
KMediansLloyd.run(Database database,
Relation<V> relation) |
Modifier and Type | Method and Description |
---|---|
<V extends O> |
KMeansQualityMeasure.calculateCost(Clustering<? extends MeanModel<V>> clustering,
PrimitiveDistanceFunction<? super V,? extends D> distanceFunction,
Relation<V> relation)
Calculates and returns the quality measure.
|
<V extends NumberVector<?>> |
WithinClusterVarianceQualityMeasure.calculateCost(Clustering<? extends MeanModel<V>> clustering,
PrimitiveDistanceFunction<? super V,? extends NumberDistance<?,?>> distanceFunction,
Relation<V> relation) |
<V extends NumberVector<?>> |
WithinClusterMeanDistanceQualityMeasure.calculateCost(Clustering<? extends MeanModel<V>> clustering,
PrimitiveDistanceFunction<? super V,? extends NumberDistance<?,?>> distanceFunction,
Relation<V> relation) |
Modifier and Type | Class and Description |
---|---|
class |
EMModel<V extends FeatureVector<?>>
Cluster model of an EM cluster, providing a mean and a full covariance
Matrix.
|
class |
KMeansModel<V extends NumberVector<?>>
Trivial subclass of the
MeanModel that indicates the clustering to be
produced by k-means (so the Voronoi cell visualization is sensible). |
class |
SubspaceModel<V extends FeatureVector<?>>
Model for Subspace Clusters.
|
Modifier and Type | Field and Description |
---|---|
private Clustering<MeanModel<? extends NumberVector<?>>> |
ClusterParallelMeanVisualization.Instance.clustering
The result we visualize.
|
Modifier and Type | Method and Description |
---|---|
private static Clustering<MeanModel<? extends NumberVector<?>>> |
ClusterParallelMeanVisualization.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model.
|
Modifier and Type | Method and Description |
---|---|
private static <NV extends NumberVector<?>> |
EMClusterVisualization.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model.
|
Modifier and Type | Method and Description |
---|---|
Clustering<MeanModel<V>> |
SameSizeKMeansAlgorithm.run(Database database,
Relation<V> relation)
Run k-means with cluster size constraints.
|