A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ 

K

k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.EM
Holds the value of EM.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.EM.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.KMeans
Holds the value of KMeans.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.KMeans.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder
Holds the value of KNNDistanceOrder.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.KNNJoin
The k parameter
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.KNNJoin.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ABOD
k parameter
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ABOD.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.AbstractAggarwalYuOutlier
The target dimensionality.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.AbstractAggarwalYuOutlier.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.INFLO
Holds the value of INFLO.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.INFLO.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier
The parameter k
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier
Holds the value of KNNWeightOutlier.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.LDOF
Holds the value of LDOF.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.LDOF.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.LOF
Holds the value of LOF.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.LOF.Parameterizer
The neighborhood size to use
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.meta.FeatureBagging
The parameters k for LOF.
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.meta.FeatureBagging.Parameterizer
The neighborhood size to use
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.OnlineLOF.Parameterizer
The neighborhood size to use
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ReferenceBasedOutlierDetection
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ReferenceBasedOutlierDetection.Parameterizer
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuGLSBackwardSearchAlgorithm
Parameter k - neighborhood size
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuGLSBackwardSearchAlgorithm.Parameterizer
Parameter k - neighborhood size
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuRandomWalkEC
Parameter k
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuRandomWalkEC.Parameterizer
Parameter for kNN
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.PrecomputedKNearestNeighborNeighborhood.Factory
parameter k
k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.PrecomputedKNearestNeighborNeighborhood.Factory.Parameterizer
Parameter k
k - Variable in class de.lmu.ifi.dbs.elki.application.visualization.KNNExplorer.ExplorerWindow
 
k - Variable in class de.lmu.ifi.dbs.elki.data.synthetic.bymodel.distribution.GammaDistribution
Alpha == k
k - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.AbstractRandomFeatureSelectionFilter
Holds the desired cardinality of the subset of attributes selected for projection.
k - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.AbstractRandomFeatureSelectionFilter.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance.Instance
Value for k
k - Variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance
The value of k
k - Variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance.Parameterizer
The value of k
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor.Factory
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor.Factory.Parameterizer
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor
The query k value.
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory.Parameterizer
 
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex
Query k
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.HiSCPreferenceVectorIndex.Factory
Holds the value of parameter HiSCPreferenceVectorIndex.Factory.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.HiSCPreferenceVectorIndex.Factory.Parameterizer
Holds the value of parameter HiSCPreferenceVectorIndex.Factory.K_ID.
k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.HiSCPreferenceVectorIndex
Holds the value of parameter k.
k - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.heap.KNNList
The value of k this was materialized for.
k - Variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierGammaScaling
Gamma parameter k
k - Variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.TopKOutlierScaling
Number of outliers to keep.
k - Variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.TopKOutlierScaling.Parameterizer
 
k_0 - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop.ApproximationLine
The start value for k.
k_i - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering
k_i - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering.Parameterizer
 
K_I_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering
Parameter to specify the multiplier for the initial number of seeds, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering
Parameter to specify the number of clusters to find, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.HiCO
Optional parameter to specify the number of nearest neighbors considered in the PCA, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.EM
Parameter to specify the number of clusters to find, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.KMeans
Parameter to specify the number of clusters to find, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder
Parameter to specify the distance of the k-distant object to be assessed, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.KNNJoin
Parameter that specifies the k-nearest neighbors to be assigned, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ABOD
Parameter for k, the number of neighbors used in kNN queries.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.AbstractAggarwalYuOutlier
OptionID for the target dimensionality
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.INFLO
Parameter to specify the number of nearest neighbors of an object to be considered for computing its INFLO_SCORE. must be an integer greater than 1.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier
Parameter to specify the k nearest neighbor
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier
Parameter to specify the k nearest neighbor
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.LDOF
Parameter to specify the number of nearest neighbors of an object to be considered for computing its LDOF_SCORE, must be an integer greater than 1.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.LOF
Parameter to specify the number of nearest neighbors of an object to be considered for computing its LOF_SCORE, must be an integer greater than 1.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ReferenceBasedOutlierDetection
Parameter to specify the number of nearest neighbors of an object, to be considered for computing its REFOD_SCORE, must be an integer greater than 1.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuGLSBackwardSearchAlgorithm.Parameterizer
Parameter to specify the k nearest neighbors
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuRandomWalkEC.Parameterizer
Parameter to specify the number of neighbors
K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.PrecomputedKNearestNeighborNeighborhood.Factory.Parameterizer
Parameter k
K_ID - Static variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance
OptionID for the "k" parameter.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor.Factory
Parameter to specify the number of nearest neighbors of an object to be materialized. must be an integer greater than 1.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory
Optional parameter to specify the number of nearest neighbors considered in the PCA, must be an integer greater than 0.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.HiSCPreferenceVectorIndex.Factory
The number of nearest neighbors considered to determine the preference vector.
K_ID - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp.MkAppTreeFactory
Parameter for k
K_ID - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop.MkCopTreeFactory
Parameter for k
K_ID - Static variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.TopKOutlierScaling
Parameter to specify the number of outliers to keep Key: -topk.k
k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.AbstractMkTreeUnified
Holds the maximum value of k to support.
k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.AbstractMkTreeUnifiedFactory
Holds the value of parameter AbstractMkTreeUnifiedFactory.K_MAX_ID.
k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.AbstractMkTreeUnifiedFactory.Parameterizer
 
k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp.MkAppTree
Parameter k.
k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp.MkAppTreeFactory
Parameter k.
k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp.MkAppTreeFactory.Parameterizer
Parameter k.
k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop.MkCoPTree
Parameter k.
k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop.MkCopTreeFactory
Parameter k.
k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop.MkCopTreeFactory.Parameterizer
 
k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabDirectoryEntry
The maximal number of knn distances to be stored.
k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabLeafEntry
The maximal number of knn distances to be stored.
k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.MkTreeHeader
The maximum number k of reverse kNN queries to be supported.
K_MAX_ID - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.AbstractMkTreeUnifiedFactory
Parameter specifying the maximal number k of reverse k nearest neighbors to be supported, must be an integer greater than 0.
kappa - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj.PreDeConSubspaceIndex
The kappa value for generating the variance vector.
KAPPA - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d.EMClusterVisualization
 
kcomp - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.LoOP
Holds the value of LoOP.KCOMP_ID.
kcomp - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.LoOP.Parameterizer
Holds the value of LoOP.KCOMP_ID.
KCOMP_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.LoOP
Parameter to specify the number of nearest neighbors of an object to be considered for computing its LOOP_SCORE, must be an integer greater than 1.
KDDCLIApplication - Class in de.lmu.ifi.dbs.elki.application
Provides a KDDCLIApplication that can be used to perform any algorithm implementing Algorithm using any DatabaseConnection implementing DatabaseConnection.
KDDCLIApplication(boolean, KDDTask) - Constructor for class de.lmu.ifi.dbs.elki.application.KDDCLIApplication
Constructor.
KDDCLIApplication.Parameterizer - Class in de.lmu.ifi.dbs.elki.application
Parameterization class.
KDDCLIApplication.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.application.KDDCLIApplication.Parameterizer
 
KDDTask - Class in de.lmu.ifi.dbs.elki
Provides a KDDTask that can be used to perform any algorithm implementing Algorithm using any DatabaseConnection implementing DatabaseConnection.
KDDTask(InputStep, AlgorithmStep, EvaluationStep, OutputStep, Collection<Pair<Object, Parameter<?, ?>>>) - Constructor for class de.lmu.ifi.dbs.elki.KDDTask
Constructor.
KDDTask.Parameterizer - Class in de.lmu.ifi.dbs.elki
Parameterization class.
KDDTask.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.KDDTask.Parameterizer
 
kernel - Variable in class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix
The kernel matrix
KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.EpanechnikovKernelDensityFunction
Static instance.
KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.GaussianKernelDensityFunction
Static instance.
KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.TriangularKernelDensityFunction
Static instance.
KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.UniformKernelDensityFunction
Static instance.
KERNEL_FUNCTION_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ABOD
Parameter for the kernel function.
KernelDensityEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics
Estimate density given an array of points.
KernelDensityEstimator(double[], double, double, KernelDensityFunction, int) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.KernelDensityEstimator
Initialize and execute kernel density estimation.
KernelDensityEstimator(double[], KernelDensityFunction) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.KernelDensityEstimator
Process an array of data
KernelDensityFunction - Interface in de.lmu.ifi.dbs.elki.math.statistics
Inner function of a kernel density estimator.
KernelMatrix - Class in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel
Provides a class for storing the kernel matrix and several extraction methods for convenience.
KernelMatrix(double[][]) - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix
Wraps the matrixArray in a KernelMatrix
KernelMatrix(PrimitiveSimilarityFunction<? super O, DoubleDistance>, Relation<? extends O>) - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix
Deprecated.
ID mapping is not reliable!
KernelMatrix(PrimitiveSimilarityFunction<? super O, DoubleDistance>, Relation<? extends O>, ArrayDBIDs) - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix
Provides a new kernel matrix.
KernelMatrix(Matrix) - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix
Makes a new kernel matrix from matrix (with data copying).
KEY - Static variable in interface de.lmu.ifi.dbs.elki.visualization.style.StyleLibrary
Key
keymap - Variable in class de.lmu.ifi.dbs.elki.datasource.parser.TermFrequencyParser
Map
KeyVisFactory - Class in de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj
Pseudo-Visualizer, that gives the key for a clustering.
KeyVisFactory() - Constructor for class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.KeyVisFactory
Constructor, adhering to Parameterizable
KMeans<V extends NumberVector<V,?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering
Provides the k-means algorithm.
KMeans(PrimitiveDistanceFunction<? super V, D>, int, int, Long) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.KMeans
Constructor.
KMeans.Parameterizer<V extends NumberVector<V,?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering
Parameterization class.
KMeans.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.KMeans.Parameterizer
 
KMLOutputHandler - Class in de.lmu.ifi.dbs.elki.result
Class to handle KML output.
KMLOutputHandler(File, OutlierScalingFunction, boolean, boolean) - Constructor for class de.lmu.ifi.dbs.elki.result.KMLOutputHandler
Constructor.
KMLOutputHandler.Parameterizer - Class in de.lmu.ifi.dbs.elki.result
Parameterization class
KMLOutputHandler.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.result.KMLOutputHandler.Parameterizer
 
knn - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.SOD
Holds the value of SOD.KNN_ID.
knn - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.SOD.Parameterizer
Holds the value of SOD.KNN_ID.
KNN_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.SOD
Parameter to specify the number of shared nearest neighbors to be considered for learning the subspace properties., must be an integer greater than 0.
KNNChangeEvent - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
Encapsulates information describing changes of the k nearest neighbors (kNNs) of some objects due to insertion or removal of objects.
KNNChangeEvent(Object, KNNChangeEvent.Type, DBIDs, DBIDs) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.knn.KNNChangeEvent
Used to create an event when kNNs of some objects have been changed.
KNNChangeEvent.Type - Enum in de.lmu.ifi.dbs.elki.index.preprocessed.knn
Available event types.
KNNChangeEvent.Type() - Constructor for enum de.lmu.ifi.dbs.elki.index.preprocessed.knn.KNNChangeEvent.Type
 
knnDistance - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxDirectoryEntry
The aggregated k-nearest neighbor distance of the underlying MkMax-Tree node.
knnDistance - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxLeafEntry
The k-nearest neighbor distance of the underlying data object.
kNNDistance(DistanceQuery<O, D>) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxTreeNode
Determines and returns the k-nearest neighbor distance of this node as the maximum of the k-nearest neighbor distances of all entries.
kNNdistanceAdjustment(E, Map<DBID, KNNHeap<D>>) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.AbstractMkTreeUnified
Performs a distance adjustment in the subtree of the specified root entry.
kNNdistanceAdjustment(MkMaxEntry<D>, Map<DBID, KNNHeap<D>>) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxTree
Adjusts the knn distance in the subtree of the specified root entry.
kNNdistanceAdjustment(MkTabEntry<D>, Map<DBID, KNNHeap<D>>) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTree
 
knnDistanceApproximation() - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp.MkAppTreeNode
Determines and returns the polynomial approximation for the knn distances of this node as the maximum of the polynomial approximations of all entries.
KNNDistanceOrder<O,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm
Provides an order of the kNN-distances for all objects within the database.
KNNDistanceOrder(DistanceFunction<O, D>, int, double) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder
Constructor.
KNNDistanceOrder.Parameterizer<O,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm
Parameterization class.
KNNDistanceOrder.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder.Parameterizer
 
KNNDistanceOrderResult<D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.result
Wraps a list containing the knn distances.
KNNDistanceOrderResult(String, String, List<D>) - Constructor for class de.lmu.ifi.dbs.elki.result.KNNDistanceOrderResult
Construct result
knnDistances - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabDirectoryEntry
The aggregated knn distances of the underlying node.
knnDistances - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabLeafEntry
The knn distances of the underlying data object.
knnDistances(O) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTreeIndex
Returns the knn distance of the object with the specified id.
kNNDistances(DistanceQuery<O, D>) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTreeNode
Determines and returns the knn distance of this node as the maximum knn distance of all entries.
knnDistances - Variable in class de.lmu.ifi.dbs.elki.result.KNNDistanceOrderResult
Store the kNN Distances
KNNExplorer<O extends NumberVector<?,?>,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.application.visualization
User application to explore the k Nearest Neighbors for a given data set and distance function.
KNNExplorer(boolean, Database, DistanceFunction<O, D>) - Constructor for class de.lmu.ifi.dbs.elki.application.visualization.KNNExplorer
Constructor.
KNNExplorer.ExplorerWindow - Class in de.lmu.ifi.dbs.elki.application.visualization
Main window of KNN Explorer.
KNNExplorer.ExplorerWindow() - Constructor for class de.lmu.ifi.dbs.elki.application.visualization.KNNExplorer.ExplorerWindow
Constructor.
KNNExplorer.ExplorerWindow.SeriesLabelRenderer - Class in de.lmu.ifi.dbs.elki.application.visualization
Renderer for the labels, with coloring as in the plot.
KNNExplorer.ExplorerWindow.SeriesLabelRenderer() - Constructor for class de.lmu.ifi.dbs.elki.application.visualization.KNNExplorer.ExplorerWindow.SeriesLabelRenderer
Constructor.
KNNExplorer.Parameterizer<O extends NumberVector<?,?>,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.application.visualization
Parameterization class.
KNNExplorer.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.application.visualization.KNNExplorer.Parameterizer
 
KNNHeap<D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.heap
Heap used for KNN management.
KNNHeap(int, D) - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.heap.KNNHeap
Constructor.
KNNHeap(int) - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.heap.KNNHeap
Simplified constructor.
KNNHeap.Comp<D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.heap
Comparator to use.
KNNHeap.Comp() - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.heap.KNNHeap.Comp
 
KNNIndex<O> - Interface in de.lmu.ifi.dbs.elki.index
Index with support for kNN queries.
knnJoin - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.DeLiClu
Holds the knnJoin algorithm.
KNNJoin<V extends NumberVector<V,?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry> - Class in de.lmu.ifi.dbs.elki.algorithm
Joins in a given spatial database to each object its k-nearest neighbors.
KNNJoin(DistanceFunction<? super V, D>, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.KNNJoin
Constructor.
KNNJoin.Parameterizer<V extends NumberVector<V,?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry> - Class in de.lmu.ifi.dbs.elki.algorithm
Parameterization class.
KNNJoin.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.KNNJoin.Parameterizer
 
KNNList<D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.heap
Finalized KNN List.
KNNList(KNNHeap<D>, D) - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.heap.KNNList
Constructor, to be called from KNNHeap only!
KNNList.DBIDItr - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.heap
Proxy iterator for accessing DBIDs.
KNNList.DBIDItr(Iterator<? extends DistanceResultPair<?>>) - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.heap.KNNList.DBIDItr
Constructor.
KNNList.DBIDView - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.heap
A view on the DBIDs of the result
KNNList.DBIDView(List<? extends DistanceResultPair<?>>) - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.heap.KNNList.DBIDView
Constructor.
KNNList.DistanceItr<D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.heap
Proxy iterator for accessing DBIDs.
KNNList.DistanceItr(Iterator<? extends DistanceResultPair<D>>) - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.heap.KNNList.DistanceItr
Constructor.
KNNList.DistanceView<D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.heap
A view on the Distances of the result
KNNList.DistanceView(List<? extends DistanceResultPair<D>>) - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.heap.KNNList.DistanceView
Constructor.
KNNListener - Interface in de.lmu.ifi.dbs.elki.index.preprocessed.knn
Listener interface invoked when the k nearest neighbors (kNNs) of some objects have been changed due to insertion or removals of objects.
KNNOutlier<O,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier
Outlier Detection based on the distance of an object to its k nearest neighbor.
KNNOutlier(DistanceFunction<? super O, D>, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier
Constructor for a single kNN query.
KNNOutlier.Parameterizer<O,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier
Parameterization class.
KNNOutlier.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier.Parameterizer
 
knnQuery - Variable in class de.lmu.ifi.dbs.elki.application.visualization.KNNExplorer.ExplorerWindow
Holds the associated kNN query
KNNQuery<O,D extends Distance<D>> - Interface in de.lmu.ifi.dbs.elki.database.query.knn
The interface of an actual instance.
knnQuery - Variable in class de.lmu.ifi.dbs.elki.database.query.rknn.LinearScanRKNNQuery
KNN query we use.
knnQuery - Variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance.Instance
KNN query instance
knnQuery - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.MaterializeKNNPreprocessor
KNNQuery instance to use.
knnQuery - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex
The kNN query instance we use
knnQuery - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTreeIndex
The knn query we use internally.
KNNQUERY_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier
The kNN query used.
KNNQUERY_ID - Static variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance
OptionID for the KNN query class to use (preprocessor, approximation, ...)
KNNQueryFilteredPCAIndex<NV extends NumberVector<? extends NV,?>> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
Provides the local neighborhood to be considered in the PCA as the k nearest neighbors of an object.
KNNQueryFilteredPCAIndex(Relation<NV>, PCAFilteredRunner<NV>, KNNQuery<NV, DoubleDistance>, int) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex
Constructor.
KNNQueryFilteredPCAIndex.Factory<V extends NumberVector<V,?>> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
Factory class
KNNQueryFilteredPCAIndex.Factory(DistanceFunction<V, DoubleDistance>, PCAFilteredRunner<V>, Integer) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory
Constructor.
KNNQueryFilteredPCAIndex.Factory.Parameterizer<NV extends NumberVector<NV,?>> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
Parameterization class.
KNNQueryFilteredPCAIndex.Factory.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory.Parameterizer
 
kNNReach - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.LOF.LOFResult
The kNN query w.r.t. the reachability distance.
kNNRefer - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.LOF.LOFResult
The kNN query w.r.t. the reference neighborhood distance.
kNNsChanged(KNNChangeEvent) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.OnlineLOF.LOFKNNListener
 
kNNsChanged(KNNChangeEvent, KNNChangeEvent) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.OnlineLOF.LOFKNNListener
Invoked after the events of both preprocessors have been received, i.e.
kNNsChanged(KNNChangeEvent) - Method in interface de.lmu.ifi.dbs.elki.index.preprocessed.knn.KNNListener
Invoked after kNNs have been updated, inserted or removed in some way.
kNNsInserted(DBIDs, DBIDs, DBIDs, LOF.LOFResult<O, D>) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.OnlineLOF.LOFKNNListener
Invoked after kNNs have been inserted and updated, updates the result.
kNNsRemoved(DBIDs, DBIDs, DBIDs, LOF.LOFResult<O, D>) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.OnlineLOF.LOFKNNListener
Invoked after kNNs have been removed and updated, updates the result.
KNNWeightOutlier<O,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier
Outlier Detection based on the accumulated distances of a point to its k nearest neighbors.
KNNWeightOutlier(DistanceFunction<? super O, D>, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier
Constructor with parameters.
KNNWeightOutlier.Parameterizer<O,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier
Parameterization class.
KNNWeightOutlier.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier.Parameterizer
 
kreach - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.LoOP
Holds the value of LoOP.KREACH_ID.
kreach - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.LoOP.Parameterizer
Holds the value of LoOP.KREACH_ID.
KREACH_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.LoOP
Parameter to specify the number of nearest neighbors of an object to be considered for computing its LOOP_SCORE, must be an integer greater than 1.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ 
Release 0.4.1 (2012-01-30_1741)