Interface | Description |
---|---|
OutlierAlgorithm |
Generic super interface for outlier detection algorithms.
|
Class | Description |
---|---|
ABOD<V extends NumberVector<V,?>> |
Angle-Based Outlier Detection
Outlier detection using variance analysis on angles, especially for high
dimensional data sets.
|
ABOD.Parameterizer<V extends NumberVector<V,?>> |
Parameterization class.
|
AbstractAggarwalYuOutlier<V extends NumberVector<?,?>> |
Abstract base class for the sparse-grid-cell based outlier detection of
Aggarwal and Yu.
|
AbstractAggarwalYuOutlier.Parameterizer |
Parameterization class.
|
AbstractDBOutlier<O,D extends Distance<D>> |
Simple distance based outlier detection algorithms.
|
AbstractDBOutlier.Parameterizer<O,D extends Distance<D>> |
Parameterization class.
|
AggarwalYuEvolutionary<V extends NumberVector<?,?>> |
EAFOD provides the evolutionary outlier detection algorithm, an algorithm to
detect outliers for high dimensional data.
|
AggarwalYuEvolutionary.Individuum |
Individuum for the evolutionary search.
|
AggarwalYuEvolutionary.Parameterizer<V extends NumberVector<?,?>> |
Parameterization class.
|
AggarwalYuNaive<V extends NumberVector<?,?>> |
BruteForce provides a naive brute force algorithm in which all k-subsets of
dimensions are examined and calculates the sparsity coefficient to find
outliers.
|
AggarwalYuNaive.Parameterizer<V extends NumberVector<?,?>> |
Parameterization class.
|
DBOutlierDetection<O,D extends Distance<D>> |
Simple distanced based outlier detection algorithm.
|
DBOutlierDetection.Parameterizer<O,D extends Distance<D>> |
Parameterization class.
|
DBOutlierScore<O,D extends Distance<D>> |
Compute percentage of neighbors in the given neighborhood with size d.
|
DBOutlierScore.Parameterizer<O,D extends Distance<D>> |
Parameterization class.
|
EMOutlier<V extends NumberVector<V,?>> |
outlier detection algorithm using EM Clustering.
|
EMOutlier.Parameterizer<V extends NumberVector<V,?>> |
Parameterization class.
|
GaussianModel<V extends NumberVector<V,?>> |
Outlier have smallest GMOD_PROB: the outlier scores is the
probability density of the assumed distribution.
|
GaussianModel.Parameterizer<V extends NumberVector<V,?>> |
Parameterization class.
|
GaussianUniformMixture<V extends NumberVector<V,?>> |
Outlier detection algorithm using a mixture model approach.
|
GaussianUniformMixture.Parameterizer<V extends NumberVector<V,?>> |
Parameterization class.
|
INFLO<O,D extends NumberDistance<D,?>> |
INFLO provides the Mining Algorithms (Two-way Search Method) for Influence
Outliers using Symmetric Relationship
Reference:
Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc. |
INFLO.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
KNNOutlier<O,D extends NumberDistance<D,?>> |
Outlier Detection based on the distance of an object to its k nearest
neighbor.
|
KNNOutlier.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
KNNWeightOutlier<O,D extends NumberDistance<D,?>> |
Outlier Detection based on the accumulated distances of a point to its k
nearest neighbors.
|
KNNWeightOutlier.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
LDOF<O,D extends NumberDistance<D,?>> |
Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a
Database.
|
LDOF.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
LOCI<O,D extends NumberDistance<D,?>> |
Fast Outlier Detection Using the "Local Correlation Integral".
|
LOCI.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
LOF<O,D extends NumberDistance<D,?>> |
Algorithm to compute density-based local outlier factors in a database based
on a specified parameter
LOF.K_ID (-lof.k ). |
LOF.LOFResult<O,D extends NumberDistance<D,?>> |
Encapsulates information like the neighborhood, the LRD and LOF values of
the objects during a run of the
LOF algorithm. |
LOF.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
LoOP<O,D extends NumberDistance<D,?>> |
LoOP: Local Outlier Probabilities
Distance/density based algorithm similar to LOF to detect outliers, but with
statistical methods to achieve better result stability.
|
LoOP.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
OnlineLOF<O,D extends NumberDistance<D,?>> |
Incremental version of the
LOF Algorithm, supports insertions and
removals. |
OnlineLOF.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
OPTICSOF<O,D extends NumberDistance<D,?>> |
OPTICSOF provides the Optics-of algorithm, an algorithm to find Local
Outliers in a database.
|
OPTICSOF.Parameterizer<O,D extends NumberDistance<D,?>> |
Parameterization class.
|
ReferenceBasedOutlierDetection<V extends NumberVector<?,?>,D extends NumberDistance<D,?>> |
provides the Reference-Based Outlier Detection algorithm, an algorithm that
computes kNN distances approximately, using reference points.
|
ReferenceBasedOutlierDetection.Parameterizer<V extends NumberVector<?,?>,D extends NumberDistance<D,?>> |
Parameterization class.
|
SOD<V extends NumberVector<V,?>> | |
SOD.Parameterizer<V extends NumberVector<V,?>> |
Parameterization class.
|
SOD.SODModel<O extends NumberVector<O,?>> | |
SOD.SODProxyScoreResult |
Proxy class that converts a model result to an actual SOD score result.
|
Outlier detection algorithms
de.lmu.ifi.dbs.elki.algorithm