Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms
Clustering algorithms are supposed to implement the
Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
Spatial outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data
(e.g. compute distributions, distance distributions etc.)
|
de.lmu.ifi.dbs.elki.application.cache |
Utility applications for the persistence layer such as distance cache builders.
|
de.lmu.ifi.dbs.elki.application.visualization |
Visualization applications in ELKI.
|
de.lmu.ifi.dbs.elki.datasource.parser |
Parsers for different file formats and data types.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter |
Distance functions deriving distances from e.g. similarity measures
|
de.lmu.ifi.dbs.elki.distance.distancevalue |
Distance values, i.e. object storing an actual distance value along with
comparison functions and value parsers.
|
de.lmu.ifi.dbs.elki.evaluation.similaritymatrix |
Render a distance matrix to visualize a clustering-distance-combination.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop | |
de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
Principal Component Analysis (PCA) and Eigenvector processing.
|
de.lmu.ifi.dbs.elki.visualization.opticsplot |
Code for drawing OPTICS plots
|
de.lmu.ifi.dbs.elki.visualization.svg |
Base SVG functionality (generation, markers, thumbnails, export, ...).
|
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d |
Visualizers based on 2D projections.
|
Modifier and Type | Class and Description |
---|---|
class |
MaterializeDistances<O,D extends NumberDistance<D,?>>
Algorithm to materialize all the distances in a data set.
|
static class |
MaterializeDistances.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
OPTICSXi<N extends NumberDistance<N,?>>
Class to handle OPTICS Xi extraction.
|
static class |
OPTICSXi.Parameterizer<D extends NumberDistance<D,?>>
Parameterization class.
|
private static class |
OPTICSXi.SteepScanPosition<N extends NumberDistance<N,?>>
Position when scanning for steep areas
|
Modifier and Type | Class and Description |
---|---|
class |
INFLO<O,D extends NumberDistance<D,?>>
INFLO provides the Mining Algorithms (Two-way Search Method) for Influence
Outliers using Symmetric Relationship
Reference:
Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc. |
static class |
INFLO.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
KNNOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the distance of an object to its k nearest
neighbor.
|
static class |
KNNOutlier.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
KNNWeightOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the accumulated distances of a point to its k
nearest neighbors.
|
static class |
KNNWeightOutlier.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
LDOF<O,D extends NumberDistance<D,?>>
Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a
Database.
|
static class |
LDOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
LOCI<O,D extends NumberDistance<D,?>>
Fast Outlier Detection Using the "Local Correlation Integral".
|
static class |
LOCI.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
LOF<O,D extends NumberDistance<D,?>>
Algorithm to compute density-based local outlier factors in a database based
on a specified parameter
LOF.K_ID (-lof.k ). |
static class |
LOF.LOFResult<O,D extends NumberDistance<D,?>>
Encapsulates information like the neighborhood, the LRD and LOF values of
the objects during a run of the
LOF algorithm. |
static class |
LOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
LoOP<O,D extends NumberDistance<D,?>>
LoOP: Local Outlier Probabilities
Distance/density based algorithm similar to LOF to detect outliers, but with
statistical methods to achieve better result stability.
|
static class |
LoOP.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
OnlineLOF<O,D extends NumberDistance<D,?>>
Incremental version of the
LOF Algorithm, supports insertions and
removals. |
static class |
OnlineLOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
OPTICSOF<O,D extends NumberDistance<D,?>>
OPTICSOF provides the Optics-of algorithm, an algorithm to find Local
Outliers in a database.
|
static class |
OPTICSOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
ReferenceBasedOutlierDetection<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
provides the Reference-Based Outlier Detection algorithm, an algorithm that
computes kNN distances approximately, using reference points.
|
static class |
ReferenceBasedOutlierDetection.Parameterizer<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private D |
LOCI.rmax
Holds the value of
LOCI.RMAX_ID . |
protected D |
LOCI.Parameterizer.rmax |
Modifier and Type | Class and Description |
---|---|
class |
AbstractDistanceBasedSpatialOutlier<N,O,D extends NumberDistance<D,?>>
Abstract base class for distance-based spatial outlier detection methods.
|
static class |
AbstractDistanceBasedSpatialOutlier.Parameterizer<N,O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
GLS-Backward Search is a statistical approach to detecting spatial outliers.
|
static class |
CTLuGLSBackwardSearchAlgorithm.Parameterizer<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
Parameterization class
|
class |
CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>
Spatial outlier detection based on random walks.
|
static class |
CTLuRandomWalkEC.Parameterizer<N,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
SLOM<N,O,D extends NumberDistance<D,?>>
SLOM: a new measure for local spatial outliers
Reference:
Sanjay Chawla and Pei Sun SLOM: a new measure for local spatial outliers in Knowledge and Information Systems 2005 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero. |
static class |
SLOM.Parameterizer<N,O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
SOF<N,O,D extends NumberDistance<D,?>>
The Spatial Outlier Factor (SOF) is a spatial
LOF variation. |
static class |
SOF.Parameterizer<N,O,D extends NumberDistance<D,?>>
Parameterization class
|
Modifier and Type | Class and Description |
---|---|
class |
DistanceStatisticsWithClasses<O,D extends NumberDistance<D,?>>
Algorithm to gather statistics over the distance distribution in the data
set.
|
static class |
DistanceStatisticsWithClasses.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
EvaluateRankingQuality<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries.
|
static class |
EvaluateRankingQuality.Parameterizer<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
RankingQualityHistogram<O,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries.
|
static class |
RankingQualityHistogram.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
CacheDoubleDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>
Wrapper to convert a traditional text-serialized result into a on-disk matrix
for random access.
|
static class |
CacheDoubleDistanceInOnDiskMatrix.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
CacheFloatDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>
Wrapper to convert a traditional text-serialized result into a on-disk matrix
for random access.
|
static class |
CacheFloatDistanceInOnDiskMatrix.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
KNNExplorer<O extends NumberVector<?,?>,D extends NumberDistance<D,?>>
User application to explore the k Nearest Neighbors for a given data set and
distance function.
|
static class |
KNNExplorer.Parameterizer<O extends NumberVector<?,?>,D extends NumberDistance<D,?>>
Parameterization class.
|
Modifier and Type | Class and Description |
---|---|
class |
NumberDistanceParser<D extends NumberDistance<D,N>,N extends Number>
Provides a parser for parsing one distance value per line.
|
static class |
NumberDistanceParser.Parameterizer<D extends NumberDistance<D,N>,N extends Number>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
protected NormalizedSimilarityFunction<? super O,? extends NumberDistance<?,?>> |
AbstractSimilarityAdapter.similarityFunction
Holds the similarity function.
|
protected NormalizedSimilarityFunction<? super O,? extends NumberDistance<?,?>> |
AbstractSimilarityAdapter.Parameterizer.similarityFunction
Holds the similarity function.
|
private SimilarityQuery<? super O,? extends NumberDistance<?,?>> |
AbstractSimilarityAdapter.Instance.similarityQuery
The similarity query we use.
|
Modifier and Type | Class and Description |
---|---|
class |
NumberDistance<D extends NumberDistance<D,N>,N extends Number>
Provides a Distance for a number-valued distance.
|
Modifier and Type | Class and Description |
---|---|
class |
BitDistance
Provides a Distance for a bit-valued distance.
|
class |
DoubleDistance
Provides a Distance for a double-valued distance.
|
class |
FloatDistance
Provides a Distance for a float-valued distance.
|
class |
IntegerDistance
Provides an integer distance value.
|
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<? super O,? extends NumberDistance<?,?>> |
ComputeSimilarityMatrixImage.distanceFunction
The distance function to use
|
private DistanceFunction<O,? extends NumberDistance<?,?>> |
ComputeSimilarityMatrixImage.Parameterizer.distanceFunction
The distance function to use
|
Constructor and Description |
---|
ComputeSimilarityMatrixImage(DistanceFunction<? super O,? extends NumberDistance<?,?>> distanceFunction,
ScalingFunction scaling,
boolean skipzero)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
(package private) class |
MkAppDirectoryEntry<D extends NumberDistance<D,?>>
Represents an entry in a directory node of a MkApp-Tree.
|
(package private) interface |
MkAppEntry<D extends NumberDistance<D,?>>
Defines the requirements for an entry in an MkCop-Tree node.
|
(package private) class |
MkAppLeafEntry<D extends NumberDistance<D,?>>
Represents an entry in a leaf node of a MkApp-Tree.
|
class |
MkAppTree<O,D extends NumberDistance<D,?>>
MkAppTree is a metrical index structure based on the concepts of the M-Tree
supporting efficient processing of reverse k nearest neighbor queries for
parameter k < kmax.
|
class |
MkAppTreeFactory<O,D extends NumberDistance<D,?>>
Factory for a MkApp-Tree
|
static class |
MkAppTreeFactory.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
MkAppTreeIndex<O,D extends NumberDistance<D,?>>
MkAppTree used as database index.
|
(package private) class |
MkAppTreeNode<O,D extends NumberDistance<D,?>>
Represents a node in an MkApp-Tree.
|
Modifier and Type | Class and Description |
---|---|
(package private) class |
MkCoPDirectoryEntry<D extends NumberDistance<D,?>>
Represents an entry in a directory node of an MkCop-Tree.
|
(package private) interface |
MkCoPEntry<D extends NumberDistance<D,?>>
Defines the requirements for an entry in an MkCop-Tree node.
|
(package private) class |
MkCoPLeafEntry<D extends NumberDistance<D,?>>
Represents an entry in a leaf node of a MkCoP-Tree.
|
class |
MkCoPTree<O,D extends NumberDistance<D,?>>
MkCopTree is a metrical index structure based on the concepts of the M-Tree
supporting efficient processing of reverse k nearest neighbor queries for
parameter k < kmax.
|
class |
MkCopTreeFactory<O,D extends NumberDistance<D,?>>
Factory for a MkCoPTree-Tree
|
static class |
MkCopTreeFactory.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class.
|
class |
MkCoPTreeIndex<O,D extends NumberDistance<D,?>>
MkCoPTree used as database index.
|
(package private) class |
MkCoPTreeNode<O,D extends NumberDistance<D,?>>
Represents a node in an MkCop-Tree.
|
Modifier and Type | Method and Description |
---|---|
<O,D extends NumberDistance<D,?>> |
ApproximationLine.getApproximatedKnnDistance(int k,
DistanceQuery<O,D> distanceFunction)
Returns the approximated knn-distance at the specified k.
|
Modifier and Type | Method and Description |
---|---|
<D extends NumberDistance<?,?>> |
PCARunner.processQueryResult(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
Run PCA on a QueryResult Collection
|
<D extends NumberDistance<?,?>> |
PCAFilteredRunner.processQueryResult(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
Run PCA on a QueryResult Collection
|
<D extends NumberDistance<?,?>> |
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database) |
<D extends NumberDistance<?,?>> |
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
Compute Covariance Matrix for a QueryResult Collection
By default it will just collect the ids and run processIds
|
<D extends NumberDistance<?,?>> |
WeightedCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection
By default it will just collect the ids and run processIds
|
<D extends NumberDistance<?,?>> |
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k) |
<D extends NumberDistance<?,?>> |
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection
By default it will just collect the ids and run processIds
|
Modifier and Type | Class and Description |
---|---|
class |
OPTICSNumberDistance<D extends NumberDistance<D,?>>
Adapter that will map a regular number distance to its double value.
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector<V,?>,D extends NumberDistance<?,?>> |
SVGHyperSphere.drawCross(SVGPlot svgp,
Projection2D proj,
V mid,
D rad)
Wireframe "cross" hypersphere
|
static <V extends NumberVector<V,?>,D extends NumberDistance<?,?>> |
SVGHyperSphere.drawEuclidean(SVGPlot svgp,
Projection2D proj,
V mid,
D rad)
Wireframe "euclidean" hypersphere
|
static <V extends NumberVector<V,?>,D extends NumberDistance<?,?>> |
SVGHyperSphere.drawLp(SVGPlot svgp,
Projection2D proj,
V mid,
D rad,
double p)
Wireframe "Lp" hypersphere
|
static <V extends NumberVector<V,?>,D extends NumberDistance<?,?>> |
SVGHyperSphere.drawManhattan(SVGPlot svgp,
Projection2D proj,
V mid,
D rad)
Wireframe "manhattan" hypersphere
|
Modifier and Type | Class and Description |
---|---|
class |
TreeSphereVisualization<NV extends NumberVector<NV,?>,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<NV,D,N,E>,E extends MTreeEntry<D>>
Visualize the bounding sphere of a metric index.
|